Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 45(14): 2498-2507, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561141

RESUMO

Cell membrane chromatography is an effective method for screening bioactive components acting on specific receptors in complex systems, which maintains the biological activity of the membrane receptors and improves screening efficiency. However, traditional cell membrane chromatography suffers from poor stability, resulting in a limited life span and low reproducibility, greatly limiting the application of this method. To address this problem, cyanuric chloride-decorated silica gel was used for the covalent immobilization of the cell membranes. Cyanuric chloride reacts with amino groups on the cell membranes and membrane receptors to form covalent bonds. In this way, the cell membranes are not easy to fall off. The column life of the cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography column was extended to more than 8 days, whereas the column life of the normal cell membrane chromatography column dropped sharply in the first 3 days. A cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography online HPLC-IT-TOF-MSn system was applied for screening drug leads from Trifolium pratense L. One potential drug lead, formononetin, which acts on the epidermal growth factor receptor, was screened. Our strategy of covalently immobilizing cell membrane receptors also improved the stability of cell membrane chromatography.


Assuntos
Medicamentos de Ervas Chinesas , Receptores ErbB , Membrana Celular/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Receptores ErbB/metabolismo , Reprodutibilidade dos Testes
2.
Talanta ; 240: 123204, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026637

RESUMO

Magnetic nanoparticles (NPs) cloaked with cell membranes expressing high levels of the epidermal growth factor receptor (EGFR) have been used to screen for EGFR-targeting active compounds in traditional Chinese medicine (TCM) formulations. However, previous strategies involved physical immobilization of the biomaterials on the surface of the nanocarrier, resulting in highly unstable platforms since the biological materials could dislodge easily. Chemical bonding of biomaterials to the nanoparticles surface can improve the stability of the biomimetic platforms. In this study, membrane fragments from cells expressing SNAP-Tag-EGFR (ST-EGFR) were immobilized on the surface of magnetic NPs. The ST-EGFR magnetic cell membrane nanoparticles (ST-EGFR/MCMNs) showed greater stability, and higher binding capacity, selectivity adsorption of gefitinib after 7 days compared to the un-immobilized magnetic cell membrane nanoparticles (EGFR/MCMNs). The ST-EGFR/MCMNs were used to screen for the EGFR-targeting active compounds of Zanthoxyli Radix (ZR), and identified toddalolactone and nitidine chloride. The latter significantly inhibited the proliferation of EGFR-overexpressing cancer cells, and was more effective compared to gefitinib. This innovative technology can be used to rapidly screen for active compounds from complex extracts, and aid in drug discovery.


Assuntos
Nanopartículas de Magnetita , Linhagem Celular Tumoral , Descoberta de Drogas , Receptores ErbB/genética , Gefitinibe/farmacologia , Magnetismo
3.
Anal Chem ; 93(34): 11719-11728, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415741

RESUMO

Membrane protein immobilization is particularly significant in in vitro drug screening and determining drug-receptor interactions. However, there are still some problems in the immobilization of membrane proteins with controllable direction and high conformational stability, activity, and specificity. Cell membrane chromatography (CMC) retains the complete biological structure of membrane proteins. However, conventional CMC has the limitation of poor stability, which results in its limited life span and low reproducibility. To overcome this limitation, we propose a method for the specific covalent immobilization of membrane proteins in cell membranes. We used the SNAP-tag as an immobilization tag fused to the epidermal growth factor receptor (EGFR), and Cys145 located at the active site of the SNAP-tag reacted with the benzyl group of O6-benzylguanine (BG). The SNAP-tagged EGFR was expressed in HEK293 cells. We captured the SNAP-tagged EGFR from the cell membrane suspension onto a BG-derivative-modified silica gel. Our immobilization strategy improved the life span and specificity of CMC and minimized loss of activity and nonspecific attachment of proteins. Next, a SNAP-tagged EGFR/CMC online HPLC-IT-TOF-MS system was established to screen EGFR antagonists from Epimedii folium. Icariin, magnoflorine, epimedin B, and epimedin C were retained in this model, and pharmacological assays revealed that magnoflorine could inhibit cancer cell growth by targeting the EGFR. This EGFR immobilization method may open up possibilities for the immobilization of other membrane proteins and has the potential to serve as a useful platform for screening receptor-binding leads from natural medicinal herbs.


Assuntos
Receptores ErbB , Tecnologia , Membrana Celular , Receptores ErbB/genética , Células HEK293 , Humanos , Reprodutibilidade dos Testes
4.
Anal Bioanal Chem ; 413(7): 1917-1927, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506335

RESUMO

A novel stability-enhanced graphene quantum dot (GQD)-decorated epidermal growth factor receptor (EGFR) cell membrane chromatography was constructed to study the potential application of GQDs in bioaffinity chromatography, and to screen active components acting on EGFR from traditional Chinese medicine (TCM). The carboxyl groups on the surface of GQDs reacted with the amino groups of the amino-silica gel (SiO2-NH2) to form a covalent bond, thereby preparing the GQD-decorated silica gel (SiO2-GQDs). The EGFR cell membrane was further immobilized on the SiO2-GQDs through the same covalent binding method to obtain the GQD-decorated cell membrane stationary phase (SiO2-GQDs-CMSP). In this way, the cell membrane was firmly immobilized on the decorated silica carrier. The life span and stability of the GQD-decorated cell membrane chromatographic (SiO2-GQDs-CMC) column were both enhanced, and the optimal immobilization conditions of the EGFR cell membrane were also determined. This model was then verified by establishing a SiO2-GQDs-CMC online liquid chromatography-ion trap-time-of-flight (LC-IT-TOF) system to screen possible active components in Peucedanum praeruptorum Dunn. As a result, praeruptorin B (Pra-B) was screened out, and its inhibitory effect against EGFR cell growth was evaluated by the cell counting kit-8 (CCK-8) assay. Molecular docking assay was also conducted to further estimate the interaction between Pra-B and EGFR. Overall, this research indicated that GQDs may be a promising nanomaterial to be used in prolonging the life span of the CMC column, and Pra-B could be a potential EGFR inhibitor so as to treat cancer.


Assuntos
Apiaceae/metabolismo , Cromatografia/métodos , Receptores ErbB/análise , Pontos Quânticos , Antineoplásicos/análise , Membrana Celular/metabolismo , Química Farmacêutica/métodos , Desenho de Fármacos , Gefitinibe/análise , Grafite/química , Células HEK293 , Humanos , Medicina Tradicional Chinesa , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Sep Sci ; 44(7): 1421-1429, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33491300

RESUMO

Adverse drug reactions of traditional Chinese medicine injection mainly manifested as pseudo-allergic reactions. In the present study, ginsenoside Rd, Ro, and Rg3 were identified as pseudo-allergic components in Shengmai injection by a high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography coupled online with high-performance liquid chromatography and mass spectrometry. Their pseudo-allergic activities were evaluated by in vitro and in vivo assay. The three compounds were further found to induce pseudo-allergic reaction through Mas-related G protein-coupled receptor X2. Therefore, we concluded that ginsenoside Rd, Ro and Rg3 may be potential allergens that cause pseudo-allergic reactions. This study might be helpful for the safe use of Shengmai injection.


Assuntos
Alérgenos/análise , Medicamentos de Ervas Chinesas/química , Receptores Acoplados a Proteínas G/biossíntese , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Espectrometria de Massas , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL
6.
Phytomedicine ; 79: 153333, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32920291

RESUMO

BACKGROUND: The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019 and there is no sign that the epidemic is abating . The major issue for controlling the infectious is lacking efficient prevention and therapeutic approaches. Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been reported to treat the disease, but the underlying mechanism remains controversial. PURPOSE: The objective of this study is to investigate whether CQ and HCQ could be ACE2 blockers and used to inhibit 2019-nCoV virus infection. METHODS: In our study, we used CCK-8 staining, flow cytometry and immunofluorescent staining to evaluate the toxicity and autophagy of CQ and HCQ, respectively, on ACE2 high-expressing HEK293T cells (ACE2h cells). We further analyzed the binding character of CQ and HCQ to ACE2 by molecular docking and surface plasmon resonance (SPR) assays, 2019-nCoV spike pseudotyped virus was also used to observe the viropexis effect of CQ and HCQ in ACE2h cells. RESULTS: Results showed that HCQ is slightly more toxic to ACE2h cells than CQ. Both CQ and HCQ could bind to ACE2 with KD = (7.31 ± 0.62)e-7 M and (4.82 ± 0.87)e-7 M, respectively. They exhibit equivalent suppression effect for the entrance of 2019-nCoV spike pseudotyped virus into ACE2h cells. CONCLUSIONS: CQ and HCQ both inhibit the entrance 2019-nCoV into cells by blocking the binding of the virus with ACE2. Our findings provide novel insights into the molecular mechanism of CQ and HCQ treatment effect on virus infection.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Betacoronavirus/efeitos dos fármacos , Cloroquina/farmacologia , Hidroxicloroquina/farmacologia , Peptidil Dipeptidase A/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2 , Autofagia/efeitos dos fármacos , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA