Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105946, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575087

RESUMO

Four compounds (1-4) featuring with an L-rhodinose and spiroketal, possess uncommon continuous hydroxy groups in the macrolide skeleton, and a dichloro-diketopiperazine (5) were isolated from a marine derived Micromonospora sp. FIMYZ51. The determination of the relative and absolute configurations of all isolates was achieved by extensive spectroscopic analyses, single-crystal X-ray diffraction analysis, and ECD calculations. According to structural characteristic and genomic sequences, a plausible biosynthetic pathway for compound 1-4 was proposed and a spirocyclase was inferred to be responsible for the formation of the rare spirocyclic moiety. Compounds 1-4 exhibited potent antifungal activities which is equal to itraconazole against Aspergillus niger. Compounds 1-5 exhibited different degree of inhibitory activities against opportunistic pathogenic bacteria of endocarditis (Micrococcus luteus) with MIC values ranging from 0.0625 µg/mL to 32 µg/mL. Compounds 2 and 3 showed moderate cytotoxicity against drug-resistant tumor cell lines (Namalwa and U266). The result not only provides active lead-compounds, but also reveal the potential of the spirocyclase gene resources from Micromonospora sp., which highlights the promising potential of the strain for biomedical applications.


Assuntos
Dicetopiperazinas , Macrolídeos , Micromonospora , Compostos de Espiro , Estrutura Molecular , Dicetopiperazinas/farmacologia , Dicetopiperazinas/isolamento & purificação , Dicetopiperazinas/química , Compostos de Espiro/farmacologia , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/química , Linhagem Celular Tumoral , Humanos , Macrolídeos/farmacologia , Macrolídeos/isolamento & purificação , Macrolídeos/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/química , Testes de Sensibilidade Microbiana , China , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/química , Furanos
2.
Front Mol Neurosci ; 17: 1332876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596777

RESUMO

Radicular pain, a common and complex form of neuropathic pain, presents significant challenges in treatment. Acupuncture, a therapy originating from ancient traditional Chinese medicine and widely utilized for various pain types, including radicular pain, has shown promising outcomes in the management of lumbar radicular pain, cervical radicular pain, and radicular pain due to spinal stenosis. Despite its efficacy, the exact mechanisms through which acupuncture achieves analgesia are not fully elucidated and are the subject of ongoing research. This review sheds light on the current understanding of the analgesic mechanisms of acupuncture for radicular pain, offering valuable perspectives for both clinical application and basic scientific research. Acupuncture is postulated to relieve radicular pain by several mechanisms: peripherally, it reduces muscle spasms, lessens mechanical pressure on nerve roots, and improves microcirculation; at the molecular level, it inhibits the HMGB1/RAGE and TLR4/NF-κB signaling pathways, thereby decreasing the release of pro-inflammatory cytokines; within the spinal cord, it influences synaptic plasticity; and centrally, it modulates brain function, particularly affecting the medial prefrontal cortex, anterior cingulate cortex, and thalamus within the default mode network. By acting across these diverse biological domains, acupuncture presents an effective treatment modality for radicular pain, and deepening our understanding of the underlying mechanisms regarding analgesia for radicular pain is crucial for enhancing its clinical efficacy and advancement in pain management.

3.
Sci Total Environ ; 926: 171934, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527536

RESUMO

Climate change can significantly alter phytoplankton growth and proliferation, which would counteract restoration efforts to control algal blooms. However, the knowledge is limited about the quantitative evaluation of the causal effect of algal biomass resurgence in large shallow lakes where there is no significant improvement after long term lake restoration. Here, a bucket process-based phytoplankton dynamic model is developed to quantify the contributions of climate change and nutrients concentration changes to phytoplankton biomass resurgence after 2014 in hypereutrophic Lake Taihu, China. Compared to 2008-2014, the mean water temperature (WT) and the mean phosphate are higher, the mean photosynthetically active radiation (PAR), the mean total suspended solids (TSS), and the mean dissolved inorganic nitrogen (DIN) are lower, during 2015-2020. Their contribution to algal biomass resurgence during 2015-2020 is WT (+58.7 %), PAR (-2.6 %), TSS (+23.2 %), DIN (-22.1 %) and phosphate (+42.7 %), respectively. Climate change (WT, PAR, and TSS), which contributed +64.9 % to the phytoplankton biomass resurgence, underscores the urgent need to continuously take more effective measures to reduce nutrient emissions to offset the effects of climate change in Lake Taihu and in other eutrophic lakes.


Assuntos
Mudança Climática , Lagos , Biomassa , Monitoramento Ambiental , Fitoplâncton , Eutrofização , China , Fosfatos , Nitrogênio , Fósforo/análise
4.
J Nat Med ; 78(3): 525-536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457082

RESUMO

Ipomoea muricata (L.) Jacq. seeds (Convolvulaceae) are used as a traditional laxative and carminative medicine. Muricatins XIV (1), XV (2), XVI (3), and XVII (4), were isolated from I. muricata seeds as four new resin glycosides, along with seven known compounds, three of which were isolated for the first time as natural products; their structures were determined using MS and NMR spectroscopy. Compounds 1-4 are macrolactones (jalapins); the sugar moieties of 1, 2, and 4 are partially acylated with 2S-methylbutyric acid, while that of 3 is esterified with 2S-methylbutyric and 2S-methyl-3S-hydroxybutyric acids. In addition, the antiviral activities of the seven compounds obtained in this study, together with five known compounds obtained in our previous study into resin glycosides from I. muricata seeds, were evaluated against herpes simplex virus type 1 (HSV-1); their cytotoxicities against HL-60 human promyelocytic leukemia cells were also investigated. All examined jalapins exhibited similar or slightly weaker anti-HSV-1 activities than acyclovir, the positive control; however, the glycosidic acid of 4 was inactive, while its methyl ester was weakly active. On the other hand, cytotoxicity testing against HL-60 cells showed similar results to those observed during anti-HSV-1 activity testing, with the exception that one jalapin was less active.


Assuntos
Antivirais , Glicosídeos , Ipomoea , Resinas Vegetais , Sementes , Ipomoea/química , Sementes/química , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Resinas Vegetais/química , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Estrutura Molecular , Herpesvirus Humano 1/efeitos dos fármacos , Células HL-60 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética
5.
Water Res ; 253: 121312, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367383

RESUMO

Two iron-electrolysis assisted anammox/denitrification (EAD) systems, including the suspended sludge reactor (ESR) and biofilm reactor (EMR) were constructed for mainstream wastewater treatment, achieving 84.51±4.38 % and 87.23±3.31 % of TN removal efficiencies, respectively. Sludge extracellular polymeric substances (EPS) analysis, cell apoptosis detection and microbial analysis demonstrated that the strengthened cell lysate/apoptosis and EPS production acted as supplemental carbon sources to provide new ecological niches for heterotrophic bacteria. Therefore, NO3--N accumulated intrinsically during anammox reaction was reduced. The rising cell lysis and apoptosis in the ESR induced the decline of anammox and enzyme activities. In contrast, this inhibition was scavenged in EMR because of the more favorable environment and the significant increase in EPS. Moreover, ESR and EMR achieved efficient phosphorus removal (96.98±5.24 % and 96.98±4.35 %) due to the continued release of Fe2+ by the in-situ corrosion of iron anodes. The X-ray diffraction (XRD) indicated that vivianite was the dominant P recovery product in EAD systems. The anaerobic microenvironment and the abundant EPS in the biofilm system showed essential benefits in the mineralization of vivianite.


Assuntos
Compostos Ferrosos , Nitratos , Fosfatos , Esgotos , Águas Residuárias , Desnitrificação , Fósforo , Ferro , Oxidação Anaeróbia da Amônia , Eletrólise , Reatores Biológicos/microbiologia , Nitrogênio , Oxirredução
6.
Sci Rep ; 14(1): 4058, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374275

RESUMO

The effect of hydrodynamic mixing on controlling Microcystis blooms or changing the algal community to diatom dominance has been widely studied; however, the effects of colonial Microcystis biomass on the development of the algal community are poorly known. Here, in order to study the changes in Microcystis blooms under continuous aeration mixing, an experiment was carried out in a greenhouse with factors of varying biomass of Microcystis and inorganic nitrogen and phosphorus enrichment in summer. There were three chlorophyll a (Chl-a) levels in six treatments: low Chl-a level of 68.4 µg L-1 (treatments L, L-E), medium Chl-a level of 468.7 µg L-1 (treatments M, M-E), and high Chl-a level of 924.1 µg L-1 (treatments H, H-E). Treatments L-E, M-E and H-E were enriched with the same inorganic nitrogen and phosphorus nutrients. During the experiment of 30 days, the concentration of Microcystis and Chl-a decreased, and diatom Nitzschia palea cells appeared in all the treatments, which became dominant in treatments M, M-E, H and H-E, with the highest biomass of 9.41 ± 1.96 mg L-1 Nitzschia in treatment H-E on day 30. The rank order of the biomass of Nitzschia from low to high was (L = L-E) < (M = M-E) < H < H-E (P < 0.05). In addition, Nitzschia cells were aggregates attached to Microcystis colonies in all the treatments. The results showed that the initial biomass of colonial Microcystis affected the algal shift from Microcystis dominance to Nitzschia dominance. However, the enriched inorganic nitrogen and phosphorus was beneficial for the Nitzschia increase in the high biomass treatment alone. The shift from Microcystis dominance to diatom dominance under continuous aeration mixing may be caused by low light conditions as well as the nutrients released from Microcystis decay. Moreover, the aerobic condition caused by aeration mixing maintained the colonial mucilaginous sheath to support the growth of Nitzschia cells in aggregation. This study found for the first time that Microcystis blooms could shift to diatom Nitzschia dominance in aggregates. It provided a method to control and manipulate Microcystis blooms to diatom dominance through continuous aeration mixing to proper biomass of Microcystis colonies. The shift to diatoms dominance would provide more high quality food organisms for aquaculture and be beneficial to the material cycling and energy flowing in food web dynamics.


Assuntos
Diatomáceas , Microcystis , Biomassa , Clorofila A , Fósforo/farmacologia , Nitrogênio/farmacologia
7.
Talanta ; 270: 125558, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183713

RESUMO

Deep eutectic solvents (DES), regarded as promising green solvents, have gained attention due to their distinctive properties, particularly in analytical chemistry. While the use of DES in solvent extraction and separation has been extensively studied, its application in the synthesis of adsorbents has just begun. Phenolic resin, with its polyhydroxy structure and stable spherical morphology, could serve as an effective as adsorbents for enrichment of active ingredients in herbal medicine. Designing adsorbents with high selectivity and adsorption capacity presents a critical challenge in the enrichment of active ingredients in herbal medicine. In this study, alcohol-based DESs were employed as regulators of morphology and structure instead of organic solvents, facilitating the creation of polyhydroxy structure, adjustable pores and high specific surface areas. The resulting DES-regulated porous phenolic resin demonstrated enhanced extraction and separation capacity for active ingredients compared to conventional spherical phenolic resin owing to the alcohol-based DES offering more interaction modes with the analytes.


Assuntos
Abietanos , Formaldeído , Fenóis , Polímeros , Salvia miltiorrhiza , Solventes/química , Salvia miltiorrhiza/química , Solventes Eutéticos Profundos , Porosidade , Extratos Vegetais/química , Etanol
8.
Eur J Vasc Endovasc Surg ; 67(4): 663-671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863308

RESUMO

OBJECTIVE: Selenium (Se) is a key part of the body's oxidation defence system. However, it is unclear whether Se affects the development of aortic aneurysm (AA). An animal experiment was conducted to clarify the role of Se in AA development. METHODS: C57BL/6N male mice were fed with a Se deficient (Se-D, < 0.05 mg/kg), Se adequate (Se-A, 0.2 mg/kg), or Se supplemented (Se-S, 1 mg/kg) diet for 8 weeks. Subsequently, an AA murine model (Se-D, n = 11; Se-A, n = 12; Se-S, n = 15) was established using angiotensin II (Ang II, 1 mg/kg/min) for four weeks plus ß-aminopropionitrile (BAPN, 1 mg/mL) for the first two weeks. Saline replaced Ang II, and BAPN was removed during the modelling process for sham mice (Se-A, n = 9). To determine whether Se deficiency promoted aortic dilation via matrix metalloproteinase-2 (MMP-2), the non-specific MMP inhibitor doxycycline (Dox, 100 mg/kg/day) was given to Se-D AA mice (n = 7) for two weeks. RESULTS: The maximum aortic diameter in Se-D AA model mice was significantly increased compared with Se-A AA model mice. MMP-2 expression and activity in the aortic media of Se-D AA model mice was significantly increased compared with Se-A AA model mice. A large number of vascular smooth muscle cells (VSMCs) were found aggregating in the media of the non-dilated aorta of Se-D AA model mice, which was completely inhibited by Dox. The percentage of VSMCs in aortic media of Se-D AA model mice was significantly higher than in Se-A AA model mice. The maximum aortic diameter and occurrence rate of AA in Se-D AA model mice with Dox were significantly reduced compared with Se-D AA model mice. CONCLUSION: Se deficiency promoted dilatation of the aorta in AA model mice by increasing expression and activity of VSMC derived MMP-2, causing abnormal aggregation and proliferation of VSMCs in aortic media.


Assuntos
Aneurisma Aórtico , Selênio , Masculino , Camundongos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular/metabolismo , Dilatação , Selênio/farmacologia , Selênio/metabolismo , Aminopropionitrilo/farmacologia , Camundongos Endogâmicos C57BL , Aorta/metabolismo , Modelos Animais de Doenças , Miócitos de Músculo Liso/metabolismo
9.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37756614

RESUMO

Heavy metal pollution of soil, especially by lead (Pb) and cadmium (Cd), is a serious problem worldwide. The application of safe chelating agents, combined with the growing of tolerant trees, constitutes an approach for phytoremediation of heavy-metal-contaminated soil. This study aimed to determine whether the two safe chelators, tetrasodium glutamate diacetate (GLDA) and citric acid (CA), could improve the phytoremediation capacity of black locust (Robinia pseudoacacia L.) in a Pb-Cd-contaminated soil and to find the key factors affecting the biomass accumulation of stressed black locust. In Pb- and Cd-stressed black locust plants, medium- and high-concentration GLDA treatment inhibited the growth, chlorophyll synthesis and maximum photochemical efficiency (Fv/Fm), promoted the absorption of Pb and Cd ions and resulted in the shrinkage of chloroplasts and starch grains when compared with those in Pb- and Cd-stressed plants that were not treated with GLDA. The effects of CA on plant growth, ion absorption, chlorophyll content, chlorophyll fluorescence and organelle size were significantly weaker than those of GLDA. The effect of both agents on Cd absorption was greater than that on Pb absorption in all treatments. The levels of chlorophyll a and plant tissue Cd and rates of starch metabolism were identified as the key factors affecting plant biomass accumulation in GLDA and CA treatments. In the future, GLDA can be combined with functional bacteria and/or growth promoters to promote the growth of Pb- and Cd-stressed plants and to further improve the soil restoration efficiency following pollution by heavy metals. Application of CA combined with the growing of black locust plants has great potential for restoring the Cd-polluted soil. These findings also provide insights into the practical use of GLDA and CA in phytoremediation by R. pseudoacacia and the tolerant mechanisms of R. pseudoacacia to Pb-Cd-contaminated soil.


Assuntos
Metais Pesados , Robinia , Cádmio/metabolismo , Plântula , Quelantes/metabolismo , Quelantes/farmacologia , Clorofila A/metabolismo , Clorofila A/farmacologia , Chumbo/metabolismo , Metais Pesados/metabolismo , Clorofila/metabolismo , Solo/química , Amido/metabolismo , Biodegradação Ambiental
10.
Int J Biol Macromol ; 254(Pt 2): 127451, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871720

RESUMO

Chemically synthesized surfactants have promising applications in the treatment of uranium, however, their hazardous environmental effects, non-biodegradability, and numerous drawbacks prevent them from being widely used in practice. Herein, we successfully synthesized a green chelating and foaming integrated surfactant (BTBS) by Mannich reaction and acylation of bayberry tannin for the effective removal of UO22+ from aqueous environments or solid surfaces. The as-prepared surfactant was systematically characterized by FT-IR, showing that the hydrophobic groups were successfully grafted onto tannin. The modified material showed better foaming and emulsifying properties, which proved this method could improve the amphiphilicity of tannin. Moreover, for the first time, a foam fractionation method in conjunction with a tannin-based surfactant was applied for UO22+ removal from water. This surfactant was used as a co-surfactant and could readily remove 90 % of UO22+ (20 mg L-1) from water. The removal of UO22+ could be completed in a short time (30 min), and the maximum adsorption capacity was determined as 175.9 mg g-1. This surfactant can also be used for efficient decontamination of uranium-contaminated cotton cloth with a high removal rate of 94.55 %. In addition, the mechanism studies show that the adsorption of BTBS for UO22+ can be mainly attributed to a chelating mechanism between UO22+ and the adjacent phenolic hydroxyls. The novel biomass-derived BTBS with advantages such as high capture capacity, environmental friendliness, and cost-effectiveness suggests that it plays an important role in the remediation of radionuclide pollution.


Assuntos
Tensoativos , Urânio , Taninos/química , Urânio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Descontaminação , Água/química , Adsorção
11.
J Environ Manage ; 351: 119848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113787

RESUMO

To efficiently remove nutrients from low C/N sanitary sewage by conventional biological process is challenging due to the lack of sufficient electron donors. A novel electrolysis-integrated sequencing batch biofilm reactor (E-SBBR) was established to promote nitrogen and phosphorus removal for sanitary sewage with low C/N ratios (3.5-1.5). Highly efficient removal of nitrogen (>79%) and phosphorus (>97%) was achieved in the E-SBBR operating under alternating anoxic/electrolysis-anoxic/aerobic conditions. The coexistence of autotrophic nitrifiers, electron transfer-related bacteria, and heterotrophic and autohydrogenotrophic denitrifiers indicated synergistic nitrogen removal via multiple nitrogen-removing pathways. Electrolysis application induced microbial anoxic ammonia oxidation, autohydrogenotrophic denitrification and electrocoagulation processes. Deinococcus enriched on the electrodes were likely to mediate the electricity-driven ammonia oxidation which promoted ammonia removal. PICRUSt2 indicated that the relative abundances of key genes (hyaA and hyaB) associated with hydrogen oxidation significantly increased with the decreasing C/N ratios. The high autohydrogenotrophic denitrification rates during the electrolysis-anoxic period could compensate for the decreased heterotrophic rates resulting from insufficient carbon sources and nitrate removal was dramatically enhanced. Electrocoagulation with iron anode was responsible for phosphorus removal. This study provides insights into mechanisms by which electrochemically assisted biological systems enhance nutrient removal for low C/N sanitary sewage.


Assuntos
Desnitrificação , Esgotos , Nitrificação , Amônia , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Eletrólise , Biofilmes , Nutrientes , Fósforo
12.
Phytomedicine ; 123: 155185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134863

RESUMO

BACKGROUND: Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE: This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS: Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS: In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that ß-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that ß-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating ß-elemene's anti-PCa activity. CONCLUSION: This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.


Assuntos
Neoplasias da Próstata , Sesquiterpenos , Espectrometria de Massas em Tandem , Masculino , Animais , Camundongos , Humanos , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Glicólise , Proliferação de Células , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/farmacologia
13.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5365-5376, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114126

RESUMO

The present study aimed to explore the underlying mechanism of Wuling Capsules in the treatment of hepatic fibrosis(HF) through network pharmacology, molecular docking, and animal experiments. Firstly, the chemical components and targets of Wuling Capsules against HF were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicines Integrated Database(TCMID), GeneCards, and literature retrieval. The protein-protein interaction(PPI) network analysis was carried out on the common targets by STRING database and Cytoscape 3.9.1 software, and the core targets were screened, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. Enrichment analysis was conducted on the core targets and the "drug-core component-target-pathway-disease" network was further constructed. Subsequently, molecular docking between core components and core targets was conducted using AutoDock Vina software to predict the underlying mechanism of action against HF. Finally, an HF model induced by CCl_4 was constructed in rats, and the general signs and liver tissue morphology were observed. HE and Masson staining were used to analyze the liver tissue sections. The effects of Wuling Capsules on the levels of inflammatory factors, hydroxyproline(HYP) levels, and core targets were analyzed by ELISA, RT-PCR, etc. A total of 445 chemical components of Wuling Capsules were screened, corresponding to 3 882 potential targets, intersecting with 1 240 targets of HF, and 47 core targets such as TNF, IL6, INS, and PIK3CA were screened. GO and KEGG enrichment analysis showed that the core targets mainly affected the process of cell stimulation response and metabolic regulation, involving cancer, PI3K-Akt, MAPK, and other signaling pathways. Molecular docking showed that the core components of Wuling Capsules, such as lucidenic acid K, ganoderic acid B, lucidenic acid N, saikosaponin Q2, and neocryptotanshinone, had high affinities with the core targets, such as TNF, IL6 and PIK3CA. Animal experiments showed that Wuling Capsules could reduce fat vacuole, inflammatory infiltration, and collagen deposition in rat liver, decrease the levels of inflammatory cytokines TNF-α, IL-6, and HYP, and downregulated the expressions of PI3K and Akt mRNA. This study suggests that the anti-HF effect of Wuling Capsules may be achieved by regulating the PI3K-Akt signaling pathway, reducing the levels of TNF-α and IL-6 inflammatory factors, and inhibiting the excessive deposition of collagen.


Assuntos
Experimentação Animal , Medicamentos de Ervas Chinesas , Animais , Ratos , Interleucina-6 , Farmacologia em Rede , Fator de Necrose Tumoral alfa , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Medicina Tradicional Chinesa , Cápsulas , Classe I de Fosfatidilinositol 3-Quinases , Colágeno , Medicamentos de Ervas Chinesas/farmacologia
14.
ACS Appl Mater Interfaces ; 15(48): 56314-56327, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983087

RESUMO

Photothermal therapy (PTT) using near-infrared (NIR) conjugated polymers as photosensitizers has exhibited enormous potential for tumor treatment. However, most NIR conjugated polymers have poor therapeutic efficacy due to their faint absorbance in the NIR region and low photothermal conversion efficiency (PCE). Herein, a valuable strategy for designing NIR polymeric photosensitizer PEKBs with an enhanced PCE accompanied by strong NIR absorbance is proposed by means of inserting TPA-AQ as a thermally activated delayed fluorescence unit into a polymeric backbone. In these PEKBs, PEKB-244 with the appropriate molar content of the TPA-AQ unit displays the strongest NIR absorbance and the highest PCE of 64.5%. Theoretical calculation results demonstrate that the TPA-AQ unit in the polymeric backbone can modulate the intramolecular charge transfer effects and the excited energy decay routes for generating higher heat. The prepared nanoparticles (PEKB-244 NPs) exhibit remarkable photothermal conversion capacities and great biocompatibility in aqueous solutions. Moreover, PEKB-244 NPs also show outstanding photothermal stability, displaying negligible changes in the absorbance within 808 nm irradiation of 1 h (800 mW cm-2). Both in vitro and in vivo experimental results further indicate that PEKB-244 NPs can substantially kill cancer cells under NIR laser irradiation. We anticipate that this novel molecular design strategy can be employed to develop excellent NIR photosensitizers for cancer photothermal therapy.


Assuntos
Nanopartículas , Terapia Fototérmica , Fármacos Fotossensibilizantes , Polímeros/farmacologia , Fluorescência , Fototerapia
15.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(5): 604-612, 2023 Oct 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37805686

RESUMO

Chinese medicine entered a significant period from foundation to maturity between Han and Tang dynasties when the Chinese traditional stomatology was a key stage. Sorting and analysis of existing literature and research outcomes have showed that current research on stomatology between Han and Tang dynasties focuses on oral physiology, pathology, diagnosis and treatment, and health care. It also involves stomatology history and explanation of termino-logies related to mouth and teeth recorded in medical books, use of simple methods, and thinking with citation and analysis of literature simply listed and reasoning preliminarily deducted. From the macro perspective, current research has not unveiled the whole picture of stomatology between the two dynasties and left a series of key issues unresolved. Thus, new methods should be developed and employed to carry out medical research on stomatology between Han and Tang dynasties given that is has a prosperous future.


Assuntos
Boca , Medicina Bucal , Cognição , China , Medicina Tradicional Chinesa
16.
Pulm Circ ; 13(4): e12295, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808899

RESUMO

LHQK is a patented Traditional Chinese Medicine (TCM) which is clinically used for acute tracheobronchitis, cough, and other respiratory diseases. Recent studies have proved that LHQK exhibits excellent clinical efficacy in the treatment of acute lung injury (ALI). However, the corresponding mechanisms remain largely unexplored. In this study, we investigated the effects and the underlying mechanisms of LHQK on lipopolysaccharide (LPS)-induced ALI in mice. The pathological examination, inflammatory cytokines assessments, and mucus secretion evaluation indicated that administration of LHQK ameliorated LPS-induced lung injury, and suppressed the secretion of Muc5AC and pro-inflammatory cytokines (IL-6, TNF-α, and IL-1ß) in plasma and BALF. Furthermore, the results of cell-free DNA level showed that LHQK significantly inhibited LPS-induced NETs formation. Western blot revealed that LHQK effectively inhibited LPS-triggered pyroptosis in the lung. In addition, RNA-Seq data analysis, relatively bioinformatic analysis, and network pharmacology analysis revealed that LHQK and relative components may play multiple protective functions in LPS-induced ALI/acute respiratory distress syndrome (ARDS) by regulating multiple targets directly or indirectly related to NETs and pyroptosis. In conclusion, LHQK can effectively attenuate lung injury and reduce lung inflammation by inhibiting LPS-induced NETs formation and pyroptosis, which may be regulated directly or indirectly by active compounds of LHQK.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37619519

RESUMO

Vaccariae Semen, derived from the dried ripe seed of Vaccaria segetalis (Neck.) Garcke, has various therapeutic characteristics in traditional Chinese medicine (TCM), containing promoting blood circulation and unblocking meridians. It exhibits significant anti-cancer activity and is therapeutically utilized to treat and reduce chemotherapy adverse effects in cancer patients, notably those with lung cancer. However, the active ingredients responsible for its anti-lung cancer efficacy remain unknown. In this study, we used A549 cell fishing in conjunction with UHPLC-LTQ Orbitrap MS to screen for anti-lung cancer active components in Vaccariae Semen. The cell counting Kit-8 (CCK-8) assay revealed that the n-butanol extract substantially reduced A549 cell growth. Through the cell fishing assay, we found 14 A549 cell-binding compounds in the n-butanol extract, all of which were identified as triterpenoid saponins. The total saponins of Vaccariae Semen were subsequently purified using macroporous adsorption resin (MAR), and they showed a significant inhibitory effect on the proliferation of A549 lung cancer cells, as well as alterations in cell morphology, apoptosis, and fragmentation. In conclusion, saponins were discovered as the key active components responsible for the anti-lung cancer activity of Vaccariae Semen.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , 1-Butanol , Células A549 , Cromatografia Líquida de Alta Pressão , Neoplasias Pulmonares/tratamento farmacológico , Sementes
18.
Chin J Nat Med ; 21(8): 576-588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37611976

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1ß in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Células Epiteliais Alveolares , Piroptose , Gasderminas , Lipopolissacarídeos/efeitos adversos , Fator de Necrose Tumoral alfa , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico
19.
Environ Sci Pollut Res Int ; 30(37): 87925-87937, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37432572

RESUMO

Nowadays, the contemporary ecological environment has a significant impact on human survival and development. Consequently, an in-depth examination of the link between humans and nature has significant practical significance and aspirational appeal. This research analyzes provincial panel data from 2011 to 2019 using an empirical model to determine the relationship between urban land use, the ecological environment, and national physical health inputs in China. The results indicate that (1) urbanization and air pollution do not have an "inverted U-shaped" traditional environmental Kuznets curve relationship, but rather a significant "positive U" relationship; (2) urbanization and environmental management do have an inverted U-shaped classical environmental Kuznets curve relationship; (3) GDP per capita and infrastructure have a negative impact on air quality and environmental quality, and strict environmental rules can improve air quality and green amenities; (4) national physical health investment has a substantial moderating effect on the relationship between urban land use and the ecological environment.


Assuntos
Poluição do Ar , Humanos , Poluição do Ar/análise , Meio Ambiente , China , Urbanização , Desenvolvimento Econômico , Dióxido de Carbono/análise
20.
Int J Biol Macromol ; 247: 125802, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37442501

RESUMO

By-product cottonseed proteins are excellent options for numerous applications due to their superior properties and lower cost. However, its complex folded structure and large molecular weight lead to lower reactivity and insufficient amphiphilicity. Cottonseed protein isolate (CPI) is less-soluble in water. Therefore, we improved the amphiphilicity of CPI with associated hydrolysis, molecular structure unfolding, and activation by alkaline-induced deamidation (at 24, 36, and 72 h) and produced three cottonseed protein hydrolysates CPH 24, 36, and 72. FTIR/UV-CD measurements confirmed the conformational changes and conversion of the structural content. Particle size decreased 2503.4-771.8 nm, while surface hydrophobicity (133.5-326.7), carboxyl content (1.13 × 10Ö¾3-2.09 × 10Ö¾3), and flexibility increased, signifying hydrolysis, unfolding, and amphiphilicity improvement. Longer deamidation (CPH 72) exhibited the best properties, its prepared emulsions were long-term stable under all the environmental stresses without visible phase separation after at least 40 days of storage except at pH 4. Compared to CPI, it had smaller droplets (939.3-264.9 nm) and larger absolute ζ-potential (-26.5 to -58.0 mV). From the in-vitro cytotoxicity test, deamidated CPI is extremely safer than commonly used synthetic surfactants. This research provides a new method for producing multifunctional emulsifiers from CPI, which could be utilized in the development of functional foods/non-foods.


Assuntos
Óleo de Sementes de Algodão , Emulsificantes , Estrutura Molecular , Emulsificantes/química , Emulsões , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA