Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Glob Chang Biol ; 30(2): e17160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38379454

RESUMO

Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the ß-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.


Assuntos
Ecossistema , Solo , Microbiologia do Solo , Bactérias/genética , Fósforo
2.
Nat Food ; 4(10): 912-924, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783790

RESUMO

Aluminium (Al) toxicity impedes crop growth in acidic soils and is considered the second largest abiotic stress after drought for crops worldwide. Despite remarkable progress in understanding Al resistance in plants, it is still unknown whether and how the soil microbiota confers Al resistance to crops. Here we found that a synthetic community composed of highly Al-resistant bacterial strains isolated from the rice rhizosphere increased rice yield by 26.36% in acidic fields. The synthetic community harvested rhizodeposited carbon for successful proliferation and mitigated soil acidification and Al toxicity through extracellular protonation. The functional coordination between plants and microbes offers a promising way to increase the usage of legacy phosphorus in topsoil. These findings highlight the potential of microbial tools for advancing sustainable agriculture in acidic soils.


Assuntos
Microbiota , Oryza , Solo , Fósforo , Alumínio/toxicidade , Produtos Agrícolas , Ácidos
3.
J Hazard Mater ; 448: 130943, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860074

RESUMO

Improvement of refractory nitrogen-containing organics biodegradation is crucial to meet discharged nitrogen standards and guarantee aquatic ecology safety. Although electrostimulation accelerates organic nitrogen pollutants amination, it remains uncertain how to strengthen ammonification of the amination products. This study demonstrated that ammonification was remarkably facilitated under micro-aerobic conditions through the degradation of aniline, an amination product of nitrobenzene, using an electrogenic respiration system. The microbial catabolism and ammonification were significantly enhanced by exposing the bioanode to air. Based on 16S rRNA gene sequencing and GeoChip analysis, our results indicated that aerobic aniline degraders and electroactive bacteria were enriched in suspension and inner electrode biofilm, respectively. The suspension community had a significantly higher relative abundance of catechol dioxygenase genes contributing to aerobic aniline biodegradation and reactive oxygen species (ROS) scavenger genes to protect from oxygen toxicity. The inner biofilm community contained obviously higher cytochrome c genes responsible for extracellular electron transfer. Additionally, network analysis indicated the aniline degraders were positively associated with electroactive bacteria and could be the potential hosts for genes encoding for dioxygenase and cytochrome, respectively. This study provides a feasible strategy to enhance nitrogen-containing organics ammonification and offers new insights into the microbial interaction mechanisms of micro-aeration assisted with electrogenic respiration.


Assuntos
Dioxigenases , Águas Residuárias , RNA Ribossômico 16S , Aminas , Compostos de Anilina , Respiração , Ciclo do Nitrogênio
4.
J Environ Manage ; 331: 117301, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681035

RESUMO

As an efficient wastewater pretreatment biotechnology, electrostimulated hydrolysis acidification (eHA) has been used to accelerate the removal of refractory pollutants, which is closely related to the effects of electrostimulation on microbial interspecies associations. However, the ecological processes underpinning such linkages remain unresolved, especially for the microbial communities derived from different niches, such as the electrode surface and plankton. Herein, the principles of cross-niche microbial associations and community assembly were investigated using molecular ecological network and phylogenetic bin-based null model analysis (iCAMP) based on 16S rRNA gene sequences. The electrostimulated planktonic sludge and electrode biofilm displayed significantly (P < 0.05) 1.67 and 1.53 times higher organic nitrogen pollutant (azo dye Alizarin Yellow R) degradation efficiency than non-electrostimulation group, and the corresponding microbial community composition and structure were significantly (P < 0.05) changed. Electroactive bacteria and functional degraders were enriched in the electrode biofilm and planktonic sludge, respectively. Notably, electrostimulation strengthened the synergistic microbial associations (1.8 times more links) between sludge and biofilm members. Additionally, both electrostimulation and cross-niche microbial associations induced greater importance of deterministic assembly. Overall, this study highlights the specificity of cross-electrode surface microbial associations and ecological processes with electrostimulation and advances our understanding of the manipulation of sludge microbiomes in engineered wastewater treatment systems.


Assuntos
Esgotos , Purificação da Água , Nitrogênio , Filogenia , RNA Ribossômico 16S/genética , Reatores Biológicos
5.
Appl Environ Microbiol ; 88(14): e0040122, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35737807

RESUMO

Rhodanobacter has been found as the dominant genus in aquifers contaminated with high concentrations of nitrate and uranium in Oak Ridge, TN, USA. The in situ stimulation of denitrification has been proposed as a potential method to remediate nitrate and uranium contamination. Among the Rhodanobacter species, Rhodanobacter denitrificans strains have been reported to be capable of denitrification and contain abundant metal resistance genes. However, due to the lack of a mutagenesis system in these strains, our understanding of the mechanisms underlying low-pH resistance and the ability to dominate in the contaminated environment remains limited. Here, we developed an in-frame markerless deletion system in two R. denitrificans strains. First, we optimized the growth conditions, tested antibiotic resistance, and determined appropriate transformation parameters in 10 Rhodanobacter strains. We then deleted the upp gene, which encodes uracil phosphoribosyltransferase, in R. denitrificans strains FW104-R3 and FW104-R5. The resulting strains were designated R3_Δupp and R5_Δupp and used as host strains for mutagenesis with 5-fluorouracil (5-FU) resistance as the counterselection marker to generate markerless deletion mutants. To test the developed protocol, the narG gene encoding nitrate reductase was knocked out in the R3_Δupp and R5_Δupp host strains. As expected, the narG mutants could not grow in anoxic medium with nitrate as the electron acceptor. Overall, these results show that the in-frame markerless deletion system is effective in two R. denitrificans strains, which will allow for future functional genomic studies in these strains furthering our understanding of the metabolic and resistance mechanisms present in Rhodanobacter species. IMPORTANCE Rhodanobacter denitrificans is capable of denitrification and is also resistant to toxic heavy metals and low pH. Accordingly, the presence of Rhodanobacter species at a particular environmental site is considered an indicator of nitrate and uranium contamination. These characteristics suggest its future potential application in bioremediation of nitrate or concurrent nitrate and uranium contamination in groundwater ecosystems. Due to the lack of genetic tools in this organism, the mechanisms of low-pH and heavy metal resistance in R. denitrificans strains remain elusive, which impedes its use in bioremediation strategies. Here, we developed a genome editing method in two R. denitrificans strains. This work marks a crucial step in developing Rhodanobacter as a model for studying the diverse mechanisms of low-pH and heavy metal resistance associated with denitrification.


Assuntos
Nitratos , Urânio , Bactérias/genética , Ecossistema , Gammaproteobacteria , Mutagênese
6.
Water Res ; 206: 117744, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653795

RESUMO

Electrostimulated hydrolysis acidification (eHA) has been used as an efficient biological pre-treatment of refractory industrial wastewater. However, the effects of electrostimulation on the function and assembly of planktonic anaerobic sludge microbial communities are poorly understood. Using 16S rRNA gene and metagenomic sequencing, we investigated planktonic sludge microbial community structure, composition, function, assembly, and microbial interactions in response to electrostimulation. Compared with a conventional hydrolysis acidification (HA) reactor, the planktonic sludge microbial communities selected by electrostimulation promoted biotransformation of the azo dye Alizarin Yellow R. The taxonomic and functional structure and composition were significantly shifted upon electrostimulation with azo dyes degraders (e.g. Acinetobacter and Dechloromonas) and electroactive bacteria (e.g. Pseudomonas) being enriched. More microbial interactions between fermenters and decolorizing and electroactive bacteria, as well as fewer interactions between different fermenters evolved in the eHA microbial communities. Moreover, the decolorizing bacteria were linked to the higher abundance of genes encoding for azo- and nitro-reductases and redox mediator (e.g. ubiquinone) biosynthesis involved in the transformation of azo dye. Microbial community assembly was more driven by deterministic processes upon electrostimulation. This study offers new insights into the effects of electrostimulation on planktonic sludge microbial community function and assembly, and provides a promising strategy for the manipulation of anaerobic sludge microbiomes in HA engineering systems.


Assuntos
Microbiota , Esgotos , Reatores Biológicos , Plâncton , RNA Ribossômico 16S/genética , Águas Residuárias
7.
Microbiome ; 8(1): 32, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156316

RESUMO

BACKGROUND: Recently, increasing evidence supports that some complex diseases are not attributed to a given pathogen, but dysbiosis in the host intestinal microbiota (IM). The full intestinal ecosystem alterations, rather than a single pathogen, are associated with white feces syndrome (WFS), a globally severe non-infectious shrimp disease, while no experimental evidence to explore the causality. Herein, we conducted comprehensive metagenomic and metabolomic analysis, and intestinal microbiota transplantation (IMT) to investigate the causal relationship between IM dysbiosis and WFS. RESULTS: Compared to the Control shrimp, we found dramatically decreased microbial richness and diversity in WFS shrimp. Ten genera, such as Vibrio, Candidatus Bacilloplasma, Photobacterium, and Aeromonas, were overrepresented in WFS, whereas 11 genera, including Shewanella, Chitinibacter, and Rhodobacter were enriched in control. The divergent changes in these populations might contribute the observation that a decline of pathways conferring lipoic acid metabolism and mineral absorption in WFS. Meanwhile, some sorts of metabolites, especially lipids and organic acids, were found to be related to the IM alteration in WFS. Integrated with multiomics and IMT, we demonstrated that significant alterations in the community composition, functional potentials, and metabolites of IM were closely linked to shrimp WFS. The distinguished metabolites which were attributed to the IM dysbiosis were validated by feed-supplementary challenge. Both homogenous selection and heterogeneous selection process were less pronounced in WFS microbial community assembly. Notably, IMT shrimp from WFS donors eventually developed WFS clinical signs, while the dysbiotic IM can be recharacterized in recipient shrimp. CONCLUSIONS: Collectively, our findings offer solid evidence of the causality between IM dysbiosis and shrimp WFS, which exemplify the 'microecological Koch's postulates' (an intestinal microbiota dysbiosis, a disease) in disease etiology, and inspire our cogitation on etiology from an ecological perspective. Video abstract.


Assuntos
Disbiose/microbiologia , Transplante de Microbiota Fecal/veterinária , Microbioma Gastrointestinal , Intestinos/microbiologia , Penaeidae/microbiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fezes/microbiologia , Variação Genética , Intestinos/fisiopatologia
8.
BMC Microbiol ; 19(1): 173, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362704

RESUMO

BACKGROUND: Most species of Shewanella harbor two ferrochelatase paralogues for the biosynthesis of c-type cytochromes, which are crucial for their respiratory versatility. In our previous study of the Shewanella loihica PV-4 strain, we found that the disruption of hemH1 but not hemH2 resulted in a significant accumulation of extracellular protoporphyrin IX (PPIX), but it is different in Shewanella oneidensis MR-1. Hence, the function and transcriptional regulation of two ferrochelatase genes, hemH1 and hemH2, are investigated in S. oneidensis MR-1. RESULT: In the present study, deletion of either hemH1 or hemH2 in S. oneidensis MR-1 did not lead to overproduction of extracellular protoporphyrin IX (PPIX) as previously described in the hemH1 mutants of S. loihica PV-4. Moreover, supplement of exogenous hemins made it possible to generate the hemH1 and hemH2 double mutant in MR-1, but not in PV-4. Under aerobic condition, exogenous hemins were required for the growth of MR-1ΔhemH1ΔhemH2, which also overproduced extracellular PPIX. These results suggest that heme is essential for aerobic growth of Shewanella species and MR-1 could also uptake hemin for biosynthesis of essential cytochrome(s) and respiration. Besides, the exogenous hemin mediated CymA cytochrome maturation and the cellular KatB catalase activity. Both hemH paralogues were transcribed in wild-type MR-1, and the hemH2 transcription was remarkably up-regulated in MR-1ΔhemH1 mutant to compensate for the loss of hemH1. The periplasmic glutathione peroxidase gene pgpD, located in the same operon with hemH2, and a large gene cluster coding for iron, heme (hemin) uptake systems are absent in the PV-4 genome. CONCLUSION: Our results indicate that the genetic divergence in gene content and gene expression between these Shewanella species, accounting for the phenotypic difference described here, might be due to their speciation and adaptation to the specific habitats (iron-rich deep-sea vent versus iron-poor freshwater) in which they evolved and the generated mutants could potentially be utilized for commercial production of PPIX.


Assuntos
Citocromos/metabolismo , Ferroquelatase/genética , Heme/metabolismo , Protoporfirinas/metabolismo , Shewanella , Proteínas de Bactérias/genética , Ecossistema , Água Doce/química , Água Doce/microbiologia , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genótipo , Glutationa Peroxidase/genética , Hemeproteínas/metabolismo , Ferro/metabolismo , Fenótipo , Água do Mar/química , Água do Mar/microbiologia , Shewanella/genética , Shewanella/metabolismo
9.
mBio ; 10(1)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808694

RESUMO

Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N2 fixation is the major source of biologically available N, the soil N2-fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene (nifH) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly (P < 0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem.IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions.


Assuntos
Biota , Aquecimento Global , Fixação de Nitrogênio , Microbiologia do Solo , Alaska , Metagenômica , Análise em Microsséries , Oxirredutases/genética , Desenvolvimento Vegetal , Tundra
10.
Environ Microbiol ; 20(7): 2509-2522, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30051561

RESUMO

Eutrophication and climate warming, induced by anthropogenic activities, are simultaneously occurring worldwide and jointly affecting soil carbon stability. Therefore, it is of great interest to examine whether and how they interactively affect soil microbial community, a major soil carbon driver. Here, we showed that climate warming, simulated by southward transferring Mollisol soil in agricultural ecosystems from the cold temperate climate zone (N) to warm temperate climate (C) and subtropical climate zone (S), decreased soil organic matter (SOM) by 6%-12%. In contrast, amendment with nitrogen, phosphorus and potassium enhanced plant biomass by 97% and SOM by 6% at the N site, thus stimulating copiotrophic taxa but reducing oligotrophic taxa in relative abundance. However, microbial responses to nutrient amendment were overridden by soil transfer in that nutrient amendment had little effect at the C site but increased recalcitrant carbon-degrading fungal Agaricomycetes and Microbotryomycetes taxa derived from Basidiomycota by 4-17 folds and recalcitrant carbon-degrading genes by 23%-40% at the S site, implying a possible priming effect. Consequently, SOM at the S site was not increased by nutrient amendment despite increased plant biomass by 108%. Collectively, we demonstrate that soil transfer to warmer regions overrides microbial responses to nutrient amendment and weakens soil carbon sequestration.


Assuntos
Sequestro de Carbono , Carbono/metabolismo , Aquecimento Global , Microbiologia do Solo , Biomassa , Fungos/metabolismo , Microbiota , Nitrogênio/metabolismo , Nutrientes , Fósforo , Plantas/metabolismo , Potássio , Solo/química
11.
mBio ; 9(1)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463661

RESUMO

Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology.


Assuntos
Biota/efeitos dos fármacos , Ecossistema , Poluição Ambiental , Água Subterrânea/química , Água Subterrânea/microbiologia , Poluentes Químicos da Água/metabolismo , Concentração de Íons de Hidrogênio , Metagenoma/efeitos dos fármacos , Nitratos/análise , Tennessee , Urânio/análise
12.
Mol Ecol ; 26(16): 4186-4196, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28570016

RESUMO

Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p < .039) by both soil erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling.


Assuntos
Bactérias/classificação , Pradaria , Microbiologia do Solo , Solo/química , Carbono/análise , China , Nitrogênio/análise , Fósforo/análise , Potássio/análise
13.
Environ Sci Technol ; 51(7): 3609-3620, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28300407

RESUMO

To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4-2, U(VI), NO3-, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4-31 days, whereas Desulfobacterium became dominant at 80-140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.


Assuntos
Água Subterrânea/química , Urânio/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Sulfatos/química , Óxidos de Enxofre
14.
Sci Rep ; 6: 18509, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743465

RESUMO

The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.


Assuntos
Reatores Biológicos , Genes Bacterianos , Genes Fúngicos , Consórcios Microbianos/genética , Águas Residuárias/microbiologia , Biodegradação Ambiental , Carbono/metabolismo , Expressão Gênica , Humanos , Membranas Artificiais , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos Líquidos
15.
Environ Microbiol ; 18(1): 205-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26177312

RESUMO

Discerning network interactions among different species/populations in microbial communities has evoked substantial interests in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. Here, we modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the network interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140-269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. Particularly, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Água Subterrânea/microbiologia , Óleos de Plantas/metabolismo , Urânio/metabolismo , Bactérias/genética , Ecossistema , Microbiota/genética , Filogenia
16.
Sci Rep ; 5: 16191, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26536917

RESUMO

The phylogenetic diversity of coral-associated microbes has been extensively examined, but some contention remains regarding whether coral-associated microbial communities are species-specific or site-specific. It is suggested that corals may associate with microbes in terms of function, although little is known about the differences in coral-associated microbial functional gene composition and metabolic potential among coral species. Here, 16S rRNA Illumina sequencing and functional gene array (GeoChip 5.0) were used to assess coral-associated microbial communities. Our results indicate that both host species and environmental variables significantly correlate with shifts in the microbial community structure and functional potential. Functional genes related to key biogeochemical cycles including carbon, nitrogen, sulfur and phosphorus cycling, metal homeostasis, organic remediation, antibiotic resistance and secondary metabolism were shown to significantly vary between and among the four study corals (Galaxea astreata, Porites lutea, Porites andrewsi and Pavona decussata). Genes specific for anammox were also detected for the first time in the coral holobiont and positively correlated with ammonium. This study reveals that variability in the functional potential of coral-associated microbial communities is largely driven by changes in environmental factors and further demonstrates the importance of linking environmental parameters with genomic data in complex environmental systems.


Assuntos
Antozoários/microbiologia , Bactérias/genética , Bactérias/metabolismo , Animais , Carbono/metabolismo , Ecossistema , Variação Genética/genética , Homeostase/genética , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Enxofre/metabolismo
17.
Sci Rep ; 5: 16057, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26525361

RESUMO

It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it's of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a "seed bank" of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments.


Assuntos
Petróleo/microbiologia , Pseudomonas/genética , Microbiologia da Água , Análise por Conglomerados , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
18.
Ecol Appl ; 25(5): 1235-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26485952

RESUMO

The mechanisms that drive microbial turnover in time and space have received considerable attention but remain unclear, especially for situations with anthropogenic perturbation. To understand the impact of long-term oil contamination on microbial spatial turnover, 100 soil samples were taken from five oil exploration fields located in different geographic regions across China. The microbial functional diversity was analyzed with a high-throughput functional gene array, GeoChip. Our results indicated that soil microbial α-diversity (richness and Shannon diversity index) decreased significantly with contamination. All contaminated and uncontaminated samples exhibited significant spatial autocorrelation between microbial community similarity and spatial distance, as described by a distance-decay relationship (DDR). However, long-term oil exposure flattened the slopes of the DDRs of all of the functional genes and each functional group involved in C/N/P/S cycling, particularly of those involved in contaminant degradation. The relative importance of deterministic and stochastic processes in microbial assembly was determined. The decrease in microbial spatial turnover with long-term oil contamination was coupled with an increase in the proportion of deterministic processes that structured microbial assembly based on null model analysis. The results indicated long-term oil contamination significantly affects soil microbial community spatial structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.


Assuntos
Bactérias/genética , Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/toxicidade , Bactérias/classificação , Monitoramento Ambiental , Variação Genética , Poluentes do Solo/química
19.
mBio ; 6(3): e00326-15, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25968645

RESUMO

UNLABELLED: Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. IMPORTANCE: Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Técnicas Biossensoriais , Água Subterrânea/microbiologia , Consórcios Microbianos , Poluição por Petróleo/análise , Poluentes da Água/análise , Bactérias/genética , DNA Bacteriano/análise , DNA Ribossômico/genética , Ecossistema , Genes de RNAr , Água Subterrânea/química , Hidrocarbonetos/análise , Consórcios Microbianos/genética , Nitratos/análise , Filogenia , RNA Ribossômico 16S/genética , Urânio/análise , Contaminação Radioativa da Água/análise
20.
Appl Environ Microbiol ; 81(12): 4164-72, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862231

RESUMO

A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.


Assuntos
Biodegradação Ambiental , Água Subterrânea/microbiologia , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Acetatos/metabolismo , Emulsões/química , Análise em Microsséries , Óleos de Plantas , Sulfatos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA