Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin J Nat Med ; 18(8): 612-619, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768168

RESUMO

Macroangiopathy is a complication of Type II Diabetes Mellitus (T2DM), which is mainly caused by fibrosis of blood vessels. Using T2DM rat models, we investigated whether the traditional Chinese medicine, Di-Dang Decoction (DDD), exhibited anti-fibrotic actions on great vessels. T2DM rats were randomly divided into non-intervention group, early-, middle-, late-stage DDD intervention groups and control groups, including pioglitazone group and aminoguanidine group. After administration of DDD to T2DM rats at different times, we detected the amount of extracellular matrix (ECM) deposition in the thoracic aorta. The results showed that early-stage intervention with DDD could effectively protect great vessels from ECM deposition. Considering that TGF-ß1 is the master regulator of fibrosis, we further validated at the molecular level that, compared to middle- and late-stage intervention with DDD, early-stage intervention with DDD could significantly decrease the expression levels of factors related to the activated TGF-ß1/Smad signalling pathway, as well as the expression levels of downstream effectors including CTGF, MMP and TIMP family proteins, which were directly involved in ECM remodelling. Therefore, early-stage intervention with DDD can reduce macrovascular fibrosis and prevent diabetic macroangiopathy.


Assuntos
Complicações do Diabetes/prevenção & controle , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrose/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/prevenção & controle , Animais , China , Diabetes Mellitus Experimental , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
Am J Physiol Renal Physiol ; 306(5): F486-95, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24370587

RESUMO

Diabetic nephropathy (DN) is one of the most important diabetic microangiopathies. The epithelial-to-mesenchymal transition (EMT) plays an important role in DN. The physiological role of microRNA-21 (miR-21) was closely linked to EMT. However, it remained elusive whether tongxinluo (TXL) ameliorated renal structure and function by regulating miR-21-induced EMT in DN. This study aimed to determine the effect of TXL on miR-21-induced renal tubular EMT and to explore the relationship between miR-21 and TGF-ß1/smads signals. Real-time RT-PCR, cell transfection, in situ hybridization (ISH), and laser confocal microscopy were used, respectively. Here, we revealed that TXL dose dependently lowered miR-21 expression in tissue, serum, and cells. Overexpression of miR-21 can enhance α-smooth muscle actin (SMA) expression and decrease E-cadherin expression by upregulating smad3/p-smad3 expression and downregulating smad7 expression. Interestingly, TXL also increased E-cadherin expression and decreased α-SMA expression by regulating miR-21 expression. More importantly, TXL decreased collagen IV, fibronectin, glomerular basement membrane, glomerular area, and the albumin/creatinine ratio, whereas it increased the creatinine clearance ratio. The results demonstrated that TXL ameliorated renal structure and function by regulating miR-21-induced EMT, which was one of the mechanisms to protect against DN, and that miR-21 may be one of the therapeutic targets for TXL in DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/metabolismo , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA