Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229401

RESUMO

Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.


Assuntos
Bacillus licheniformis , Enteropatias , Probióticos , Animais , Camundongos , Bovinos , Antibacterianos/farmacologia , Suplementos Nutricionais , Probióticos/farmacologia , Enteropatias/microbiologia , Firmicutes/genética , Cefalexina
2.
Int J Biol Macromol ; 254(Pt 2): 127808, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926310

RESUMO

Gut microbiota and their metabolic processes depend on the intricate interplay of gut microbiota and their metabolic processes. Bacillus licheniformis, a beneficial food supplement, has shown promising effects on stabilizing gut microbiota and metabolites. However, the precise mechanisms underlying these effects remain elusive. In this study, we investigated the impact of polysaccharide-producing B. licheniformis as a dietary supplement on the gut microbiome and metabolites through a combination of scanning electron microscopy (SEM), histological analysis, high-throughput sequencing (HTS), and metabolomics. Our findings revealed that the B. licheniformis-treated group exhibited significantly increased jejunal goblet cells. Moreover, gut microbial diversity was lower in the treatment group as compared to the control, accompanied by noteworthy shifts in the abundance of specific bacterial taxa. Enrichment of Firmicutes, Lachnospiraceae, and Clostridiales_bacterium contrasted with reduced levels of Campylobacterota, Proteobacteria, Parasutterella, and Helicobacter. Notably, the treatment group showed significant weight gain after 33 days, emphasizing the polysaccharide's impact on host metabolism. Delving into gut metabolomics, we discovered significant alterations in metabolites. Nine metabolites, including olprinone, pyruvic acid, and 2-methyl-3-oxopropanoate, were upregulated, while eleven, including defoslimod and voclosporin were down-regulated, shedding light on phenylpropanoid biosynthesis, tricarboxylic acid cycle (TCA cycle), and the glucagon signaling pathway. This comprehensive multi-omics analysis offers compelling insights into the potential of B. licheniformis as a dietary polysaccharide supplement for gut health and host metabolism, promising significant implications for gut-related issues.


Assuntos
Bacillus licheniformis , Microbioma Gastrointestinal , Animais , Bovinos , Multiômica , Tibet , Metabolômica , Suplementos Nutricionais , Bactérias , Polissacarídeos/farmacologia , RNA Ribossômico 16S
3.
Biomed Pharmacother ; 86: 81-87, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939523

RESUMO

Huntington's disease (HD) is an autosomal dominant inherited disease characterized by movement, psychiatric, and cognitive disorders. Previous research suggests that Praeruptorin C (Pra-C), an effective component in the root of Peucedanum praeruptorum dunn, a traditional Chinese medicine, may function in neuroprotection. The present study was conducted to evaluate the effectiveness of Pra-C in the treatment of HD-like symptoms in a 3-nitropropionic acid (3-NP) mouse model, and to explore the possible mechanism of the drug's activity. We treated 3-NP-injected mice with two different doses of Pra-C (1.5 and 3.0mg/kg) for 3 days. Motor behavior was tested using the open field test (OFT) and rotarod test, while psychiatric symptoms were tested using the forced swimming test (FST) and tail suspension test (TST). We found that Pra-C alleviated the motor deficits and depression-like behavior in the 3-NP-treated mice, and protected neurons from excitotoxicity. Western blot analysis revealed that Pra-C upregulated BDNF, DARPP32, and huntingtin protein in the striatum of 3-NP mice. These results taken together suggest that Pra-C may have therapeutic potential with respect to the movement, psychiatric, and cognitive symptoms of HD.


Assuntos
Cumarínicos/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Nitrocompostos/toxicidade , Propionatos/toxicidade , Animais , Relação Dose-Resposta a Droga , Doença de Huntington/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Resultado do Tratamento
4.
PLoS One ; 11(2): e0148827, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863436

RESUMO

Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R) agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB) is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD). The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO) surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Quinoxalinas/administração & dosagem , Sulfonas/administração & dosagem , Administração Oral , Regulação Alostérica , Animais , Apoptose/efeitos dos fármacos , Glicemia , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Exenatida , Infarto da Artéria Cerebral Média/sangue , Concentração Inibidora 50 , Insulina/sangue , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Peptídeos/farmacologia , Cultura Primária de Células , Traumatismo por Reperfusão/prevenção & controle , Peçonhas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA