Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Phytomedicine ; 127: 155463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452694

RESUMO

BACKGROUND: Ferroptosis, a unique type of cell death triggered by iron-dependent lipid peroxidation, plays a critical role in the pathogenesis of Alzheimer's disease (AD), a debilitating condition marked by memory loss and cognitive impairment due to the accumulation of beta-amyloid (Aß) and hyperphosphorylated Tau protein. Increasing evidence suggests that inhibitors of ferroptosis could be groundbreaking in the treatment of AD. METHOD: In this study, we established in vitro ferroptosis using erastin-, RSL-3-, hemin-, and iFSP1-induced PC-12 cells. Using MTT along with Hoechst/PI staining, we assessed cell viability and death. To determine various aspects of ferroptosis, we employed fluorescence probes, including DCFDA, JC-1, C11 BODIPY, Mito-Tracker, and PGSK, to measure ROS production, mitochondrial membrane potential, lipid peroxidation, mitochondrial morphology, and intracellular iron levels. Additionally, Western blotting, biolayer interferometry technology, and shRNA were utilized to investigate the underlying molecular mechanisms. Furthermore, p-CAX APP Swe/Ind- and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, along with Caenorhabditis elegans (C. elegans) strains CL4176, CL2331, and BR5270, were employed to examine ferroptosis in AD models. RESULTS: Here, we conducted a screening of our natural medicine libraries and identified the ethanol extract of Penthorum chinense Pursh (PEE), particularly its ethyl acetate fraction (PEF), displayed inhibitory effects on ferroptosis in cells. Specifically, PEF inhibited the generation of ROS, lipid peroxidation, and intracellular iron levels. Furthermore, PEF demonstrated protective effects against H2O2-induced cell death, ROS production, and mitochondrial damage. Mechanistic investigations unveiled PEF's modulation of intracellular iron accumulation, GPX4 expression and activity, and FSP1 expression. In p-CAX APP Swe/Ind and pRK5-EGFP-Tau P301L overexpressing PC-12 cells, PEF significantly reduced cell death, as well as ROS and lipid peroxidase production. Moreover, PEF ameliorated paralysis and slowing rate in Aß and Tau transgenic C. elegans models, while inhibiting ferroptosis, as evidenced by decreased DHE intensity, lipid peroxidation levels, iron accumulation, and expression of SOD-3 and gst-4. CONCLUSION: Our findings highlight the suppressive effects of PEF on ferroptosis in AD cellular and C. elegans models. This study helps us better understand how ferroptosis affects AD and emphasizes the potential of PCP as a candidate for AD intervention.


Assuntos
Doença de Alzheimer , Ferroptose , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Caenorhabditis elegans , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ferro/metabolismo
2.
J Ethnopharmacol ; 323: 117638, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38135237

RESUMO

THE ETHNOPHARMACOLOGICAL SIGNIFICANCE: Diabetic chronic foot ulcers pose a significant therapeutic challenge as a result of the oxidative stress caused by hyperglycemia. Which impairs angiogenesis and delays wound healing, potentially leading to amputation. Gynura divaricata (L.) DC. (GD), a traditional Chinese herbal medicine with hypoglycemic effects, has been proposed as a potential therapeutic agent for diabetic wound healing. However, the underlying mechanisms of its effects remain unclear. AIM OF THE STUDY: In this study, we aimed to reveal the effect and potential mechanisms of GD on accelerating diabetic wound healing in vitro and in vivo. MATERIALS AND METHODS: The effects of GD on cell proliferation, apoptosis, reactive oxygen species (ROS) production, migration, mitochondrial membrane potential (MMP), and potential molecular mechanisms were investigated in high glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) using CCK-8, flow cytometry assay, wound healing assay, immunofluorescence, DCFH-DA staining, JC-1 staining, and Western blot. Full-thickness skin defects were created in STZ-induced diabetic rats, and wound healing rate was tracked by photographing them every day. HE staining, immunohistochemistry, and Western blot were employed to investigate the effect and molecular mechanism of GD on wound healing in diabetic rats. RESULTS: GD significantly improved HUVEC survival, decreased apoptosis, lowered ROS production, restored MMP, improved migration ability, and raised VEGF expression. The use of Nrf2-siRNA completely abrogated these effects. Topical application of GD promoted angiogenesis and granulation tissue growth, resulting in faster healing of diabetic wounds. The expression of VEGF, CD31, and VEGFR was elevated in the skin tissue of diabetic rats after GD treatment, which upregulated HO-1, NQO-1, and Bcl-2 expression while downregulating Bax expression via activation of the Nrf2 signaling pathway. CONCLUSION: The findings of this study indicate that GD has the potential to serve as a viable alternative treatment for diabetic wounds. This potential arises from its ability to mitigate the negative effects of oxidative stress on angiogenesis, which is regulated by the Nrf2 signaling pathway. The results of our study offer valuable insights into the therapeutic efficacy of GD in the treatment of diabetic wounds, emphasizing the significance of directing interventions towards the Nrf2 signaling pathway to mitigate oxidative stress and facilitate the process of angiogenesis.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Ratos , Humanos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Células Endoteliais da Veia Umbilical Humana , Transdução de Sinais
3.
Biomed Pharmacother ; 165: 115261, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549461

RESUMO

Enhancing the clearance of proteins associated with Alzheimer's disease (AD) emerges as a promising approach for AD therapeutics. This study explores the potential of Radix Stellariae, a traditional Chinese medicine, in treating AD. Utilizing transgenic C. elegans models of AD, we demonstrated that a 75% ethanol extract of Radix Stellariae (RSE) (at 50 µg/mL) effectively diminishes Aß and Tau protein expression, and alleviates their induced impairments including paralysis, behavioral dysfunction, neurotoxicity, and ROS accumulation. Additionally, RSE enhances the stress resistance of C. elegans. Further investigations revealed that RSE promotes autophagy, a critical cellular process for protein degradation, in these models. We found that inhibiting autophagy-related genes negated the neuroprotective effects of RSE, suggesting a central role for autophagy in the actions of RSE. In PC-12 cells, we observed that RSE not only inhibited Aß fibril formation but also promoted the degradation of AD-related proteins and reduced their cytotoxicity. Mechanistically, RSE was found to induce autophagy via modulating PI3K/AKT/mTOR and AMPK/mTOR signaling pathways. Importantly, inhibiting autophagy counteracted the beneficial effects of RSE on the clearance of AD-associated proteins. Moreover, we identified Dichotomine B, a ß-carboline alkaloid, as a key active constituent of RSE in mitigating AD pathology in C. elegans at concentrations ranging from 50 to 1000 µM. Collectively, our study presents novel discoveries that RSE alleviates AD pathology and toxicity primarily by inducing autophagy, both in vivo and in vitro. These findings open up new avenues for exploring the therapeutic potential of RSE and its active component, Dichotomine B, in treating neurodegenerative diseases like AD.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/metabolismo , Caenorhabditis elegans/metabolismo , Fosfatidilinositol 3-Quinases , Autofagia , Serina-Treonina Quinases TOR , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
4.
Phytother Res ; 37(10): 4639-4654, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394882

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without an effective cure. Natural products, while showing promise as potential therapeutics for AD, remain underexplored. AIMS: This study was conducted with the goal of identifying potential anti-AD candidates from natural sources using Caenorhabditis elegans (C. elegans) AD-like models and exploring their mechanisms of action. MATERIALS & METHODS: Our laboratory's in-house herbal extract library was utilized to screen for potential anti-AD candidates using the C. elegans AD-like model CL4176. The neuroprotective effects of the candidates were evaluated in multiple C. elegans AD-like models, specifically targeting Aß- and Tau-induced pathology. In vitro validation was conducted using PC-12 cells. To investigate the role of autophagy in mediating the anti-AD effects of the candidates, RNAi bacteria and autophagy inhibitors were employed. RESULTS: The ethanol extract of air-dried fruits of Luffa cylindrica (LCE), a medicine-food homology species, was found to inhibit Aß- and Tau-induced pathology (paralysis, ROS production, neurotoxicity, and Aß and pTau deposition) in C. elegans AD-like models. LCE was non-toxic and enhanced C. elegans' health. It was shown that LCE activates autophagy and its anti-AD efficacy is weakened with the RNAi knockdown of autophagy-related genes. Additionally, LCE induced mTOR-mediated autophagy, reduced the expression of AD-associated proteins, and decreased cell death in PC-12 cells, which was reversed by autophagy inhibitors (bafilomycin A1 and 3-methyladenine). DISCUSSION: LCE, identified from our natural product library, emerged as a valuable autophagy enhancer that effectively protects against neurodegeneration in multiple AD-like models. RNAi knockdown of autophagy-related genes and cotreatment with autophagy inhibitors weakened its anti-AD efficacy, implying a critical role of autophagy in mediating the neuroprotective effects of LCE. CONCLUSION: Our findings highlight the potential of LCE as a functional food or drug for targeting AD pathology and promoting human health.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Luffa , Fármacos Neuroprotetores , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Luffa/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Frutas/metabolismo , Autofagia , Modelos Animais de Doenças , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacologia
5.
Phytomedicine ; 117: 154916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327643

RESUMO

BACKGROUND: With population aging, the incidence of aging-related Alzheimer's disease (AD) is increasing, accompanied by decreased autophagy activity. At present, Caenorhabditis elegans (C. elegans) is widely employed to evaluate autophagy and in research on aging and aging-related diseases in vivo. To discover autophagy activators from natural medicines and investigate their therapeutic potential in antiaging and anti-AD effects, multiple C. elegans models related to autophagy, aging, and AD were used. METHOD: In this study, we employed the DA2123 and BC12921 strains to discover potential autophagy inducers using a self-established natural medicine library. The antiaging effect was evaluated by determining the lifespan, motor ability, pumping rate, lipofuscin accumulation of worms, and resistance ability of worms under various stresses. In addition, the anti-AD effect was examined by detecting the paralysis rate, food-sensing behavior, and amyloid-ß and Tau pathology in C. elegans. Moreover, RNAi technology was used to knock down the genes related to autophagy induction. RESULTS: We discovered that Piper wallichii extract (PE) and the petroleum ether fraction (PPF) activated autophagy in C. elegans, as evidenced by increased GFP-tagged LGG-1 foci and decreased GFP-p62 expression. In addition, PPF extended the lifespan and enhanced the healthspan of worms by increasing body bends and pumping rates, decreasing lipofuscin accumulation, and increasing resistance to oxidative, heat, and pathogenic stress. Moreover, PPF exhibited an anti-AD effect by decreasing the paralysis rate, improving the pumping rate and slowing rate, and alleviating Aß and Tau pathology in AD worms. However, the feeding of RNAi bacteria targeting unc-51, bec-1, lgg-1, and vps-34 abolished the antiaging and anti-AD effects of PPF. CONCLUSION: Piper wallichii may be a promising drug for antiaging and anti-AD. More future studies are also needed to identify autophagy inducers in Piper wallichii and clarify their molecular mechanisms.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Longevidade , Peptídeos beta-Amiloides/metabolismo , Paralisia , Autofagia , Estresse Oxidativo
6.
Phytomedicine ; 109: 154548, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610154

RESUMO

BACKGROUND: Protein aggregates are considered key pathological features in neurodegenerative diseases (NDs). The induction of autophagy can effectively promote the clearance of ND-related misfolded proteins. OBJECTIVE: In this study, we aimed to screen natural autophagy enhancers from traditional Chinese medicines (TCMs) presenting potent neuroprotective potential in multiple ND models. METHODS: The autophagy enhancers were broadly screened in our established herbal extract library using the transgenic Caenorhabditis elegans (C. elegans) DA2123 strain. The neuroprotective effects of the identified autophagy enhancers were evaluated in multiple C. elegans ND models by measuring Aß-, Tau-, α-synuclein-, and polyQ40-induced pathologies. In addition, PC-12 cells and 3 × Tg-AD mice were employed to further validate the neuroprotective ability of the identified autophagy enhancers, both in vitro and in vivo. Furthermore, RNAi bacteria and autophagy inhibitors were used to evaluate whether the observed effects of the identified autophagy enhancers were mediated by the autophagy-activated pathway. RESULTS: The ethanol extract of Folium Hibisci Mutabilis (FHME) was found to significantly increase GFP::LGG-1-positive puncta in the DA2123 worms. FHME treatment markedly inhibited Aß, α-synuclein, and polyQ40, as well as prolonging the lifespan and improving the behaviors of C. elegans, while siRNA targeting four key autophagy genes partly abrogated the protective roles of FHME in C. elegans. Additionally, FHME decreased the expression of AD-related proteins and restored cell viability in PC-12 cells, which were canceled by cotreatment with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). Moreover, FHME ameliorated AD-like cognitive impairment and pathology, as well as activating autophagy in 3 × Tg-AD mice. CONCLUSION: FHME was successfully screened from our natural product library as a potent autophagy enhancer that exhibits a neuroprotective effect in multiple ND models across species through the induction of autophagy. These findings offer a new and reliable strategy for screening autophagy inducers, as well as providing evidence that FHME may serve as a possible therapeutic agent for NDs.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Camundongos , alfa-Sinucleína/metabolismo , Caenorhabditis elegans , Doenças Neurodegenerativas/tratamento farmacológico , Animais Geneticamente Modificados , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Autofagia , Doença de Alzheimer/tratamento farmacológico
7.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34927571

RESUMO

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , Caenorhabditis elegans , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Animais Geneticamente Modificados , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidopamina , Degeneração Neural , Autofagia , Lipídeos , Neurônios Dopaminérgicos , Modelos Animais de Doenças
8.
Phytomedicine ; 108: 154483, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36260972

RESUMO

BACKGROUND: There are many types of neurological diseases with complex etiologies. At present, most clinical drugs can only relieve symptoms but cannot cure these diseases. Radix Polygalae, a famous traditional Chinese medicine from the root of plants of the genus Polygala, has the traditional effect of treating insomnia, forgetfulness, and palpitation and improving intelligence and other symptoms of neurological diseases. Saponins are important bioactive components of plants of the genus Polygala and exhibit neuroprotective effects. PURPOSE: This review aimed to summarize the traditional use of Polygala species and discuss the latest phytochemical, pharmacological, and toxicological findings, mainly with regard to Polygala saponins in the treatment of neurological disorders. METHODS: Literature was searched and collected using databases, including PubMed, Science Direct, CNKI, and Google Scholar. The search terms used included "Polygala", "saponins", "neurological diseases", "Alzheimer's disease", "toxicity", etc., and combinations of these keywords. A total of 1202 papers were retrieved until August 2022, and we included 135 of these papers on traditional uses, phytochemistry, pharmacology, toxicology and other fields. RESULTS: This literature review mainly reports on the traditional use of the Polygala genus and prescriptions containing Radix Polygalae in neurological diseases. Phytochemical studies have shown that plants of the genus Polygala mainly include saponins, flavonoids, oligosaccharide esters, alkaloids, coumarins, lignans, flavonoids, etc. Among them, saponins are the majority. Modern pharmacological studies have shown that Polygala saponins have neuroprotective effects on a variety of neurological diseases. Its mechanism of action involves autophagic degradation of misfolded proteins, anti-inflammatory, anti-apoptotic, antioxidative stress and so on. Toxicological studies have shown that Polygala saponins trigger gastrointestinal toxicity, and honey processing and glycosyl disruption of Polygala saponins can effectively ameliorate its gastrointestinal side effect. CONCLUSION: Polygala saponins are the major bioactive components in plants of the genus Polygala that exhibit therapeutic potential in various neurological diseases. This review provides directions for the future study of Polygala saponins and references for the clinical use of prescriptions containing Radix Polygalae for the treatment of neurological diseases.


Assuntos
Doenças do Sistema Nervoso , Fármacos Neuroprotetores , Polygala , Saponinas , Humanos , Saponinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Flavonoides , Etnofarmacologia
9.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36355500

RESUMO

Plant polysaccharides (PPS) composed of more than 10 monosaccharides show high safety and various pharmacological activities, including immunoregulatory, antitumor, antioxidative, antiaging, and other effects. In recent years, emerging evidence has indicated that many PPS are beneficial for metabolic diseases, such as cardiovascular disease (CVD), diabetes, obesity, and neurological diseases, which are usually caused by the metabolic disorder of fat, sugar, and protein. In this review, we introduce the common characteristics and functional activity of many representative PPS, emphasize the common risks and molecular mechanism of metabolic diseases, and discuss the pharmacological activity and mechanism of action of representative PPS obtained from plants including Aloe vera, Angelica sinensis, pumpkin, Lycium barbarum, Ginseng, Schisandra chinensis, Dioscorea pposite, Poria cocos, and tea in metabolic diseases. Finally, this review will provide directions and a reference for future research and for the development of PPS into potential drugs for the treatment of metabolic diseases.

10.
Front Pharmacol ; 13: 965390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160419

RESUMO

Rubia cordifolia (family: Rubiaceae) L (R. cordifolia) is a perennial botanical drug climbing vine. As the main part of the traditional Chinese medicine, the rhizome has a long history. A great number of literary studies have reported that it can be used for the improvement of blood circulation, hemostasis, activation of collaterals, etc. When it comes to the wide application of R. cordifolia in traditional medicine, we systematically review its traditional uses, phytochemistry and pharmacological effects. Literatures were systematically searched using several scientific databases, including China National Knowledge Infrastructure (CNKI), Baidu Scholar, PubMed, Web of Science, and other professional websites. Kew Botanical Garden and the iPlant were used for obtaining the scientific names and plant images of R. cordifolia. In addition, other information was also gathered from books including traditional Chinese herbal medicine, the Chinese Pharmacopoeia, and Chinese Materia Medica. So far, many prescriptions containing R. cordifolia have been widely used in the clinical treatment of abnormal uterine bleeding, primary dysmenorrhea and other gynecological diseases, allergic purpura, renal hemorrhage and other diseases. The phytochemistry studies have reported that more than 100 compounds are found in R. cordifolia, such as bicyclic peptides, terpenes, polysaccharides, trace elements, flavonoids, and quinones. Among them, quinones and peptides are the types of components with the highest contents in R. cordifolia. The modern pharmacological studies have revealed that R. cordifolia and its derived components have anti-tumor, anti-oxidative, anti-platelet aggregation, and anti-inflammatory effects. However, most studies are preclinical. The pharmacological mechanism of R. cordifolia has not been thoroughly studied. In addition, there are few pharmacokinetic and toxicity studies of R. cordifolia, therefore the clinical safety data for R. cordifolia is lacking. To sum up, this review for the first time summarizes a systemic and integrated traditional uses, chemical compositions, pharmacological actions and clinical applications of R. cordifolia, which provides the novel and full-scale insight for the drug development, medicinal value, and application of R. cordifolia in the future.

11.
Adv Nutr ; 13(6): 2207-2216, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36041184

RESUMO

Diet may play an important role in the occurrence of esophageal cancer (EC). The aim of this umbrella review was to grade the evidence for the association between dietary factors and EC risk. A protocol for this review was registered with the PROSPERO database (CRD42021283232). Publications were identified by searching PubMed, EMBASE, Web of Science, Cochrane Database of Systematic Reviews, and CINAHL databases. Only systematic reviews and meta-analyses of observational studies (cohort studies, case-cohort studies, nested case-control studies) were eligible. AMSTAR-2 (A Measurement Tool to Assess Systematic Reviews) was used to assess the methodological quality of included systematic reviews. For each association, random-effects pooled effect size, 95% CI, number of cases, 95% prediction interval, heterogeneity, small-study effect, and excess significance bias were calculated to grade the evidence. From 882 publications, 107 full-text articles were evaluated for eligibility, and 20 systematic reviews and meta-analyses describing 32 associations between dietary factors and EC risk were included in the present umbrella review. By assessing the strength and validity of the evidence, 1 association (positively associated with alcohol intake) was supported by highly suggestive evidence and 1 (inversely associated with calcium intake) showed a suggestive level of evidence. Evidence for 7 associations was weak (positively associated with red meat and processed-meat intake; inversely associated with whole grains, fruits, green leafy vegetables, green tea, and zinc intake). The remaining 23 associations were nonsignificant. In conclusion, the findings of this umbrella review emphasize that habitually consuming calcium, whole grains, fruits, green leafy vegetables, green tea, and zinc and reducing alcohol, red meat, and processed-meat intake are associated with a lower risk of EC. Since this umbrella review included only observational study data and some of the associations were graded as weak, caution should be exercised in interpreting these relations.


Assuntos
Cálcio , Neoplasias Esofágicas , Humanos , Revisões Sistemáticas como Assunto , Dieta , Verduras , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/etiologia , Neoplasias Esofágicas/prevenção & controle , Chá , Estudos Observacionais como Assunto
12.
J Gerontol A Biol Sci Med Sci ; 77(11): 2186-2194, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35788666

RESUMO

Nutrition intervention has emerged as a potential strategy to delay aging and promote healthy longevity. Citri Reticulatae Semen (CRS) has diverse beneficial effects and has been used for thousands of years to treat pain. However, the health benefits of CRS in prolonging health span and improving aging-related diseases and the exact mechanisms remain poorly characterized. In this study, Caenorhabditis elegans (C. elegans) was used as a model organism to study the antiaging and health span promoting activities of 75% ethanol extract of CRS (CRSE). The results showed that treatment with CRSE at 1 000 µg/mL significantly extended the life span of worms by 18.93% without detriment to health span and fitness, as evidenced by the delayed aging-related phenotypes and increased body length and width, and reproductive output. In addition, CRSE treatment enhanced the ability of resistance to heat, oxidative, and pathogenic bacterial stress. Consistently, heat shock proteins and antioxidant enzyme-related and pathogenesis-related genes were up-regulated by CRSE treatment. Furthermore, CRSE supplementation also improved α-synuclein, 6-OHDA, and polyQ40-induced pathologies in transgenic C. elegans models of Parkinson's disease and Huntington's disease. The mechanistic study demonstrated that CRSE induced autophagy in worms, while the RNAi knockdown of 4 key autophagy-related genes, including lgg-1, bec-1, vps-34, and unc-51, remarkably abrogated the beneficial effects of CRSE on the extending of life span and health span and neuroprotection, demonstrating that CRSE exerts beneficial effects via autophagy induction in worms. Together, our current findings provide new insights into the practical application of CRS for the prevention of aging and aging-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Envelhecimento Saudável , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Neuroproteção , Sêmen/metabolismo , Longevidade/genética , Autofagia , Extratos Vegetais/farmacologia
13.
Oxid Med Cell Longev ; 2022: 5288698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237381

RESUMO

Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.


Assuntos
Antioxidantes/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Animais , Antioxidantes/classificação , Disponibilidade Biológica , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Humanos , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/classificação , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/classificação , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/classificação , Polifenóis/classificação , Polifenóis/metabolismo , Resultado do Tratamento
14.
Pharmacol Res ; 170: 105697, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062240

RESUMO

With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Complemento C3/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Polygala , Saponinas/farmacologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Longevidade/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Raízes de Plantas , Polygala/química , Saponinas/isolamento & purificação , Memória Espacial/efeitos dos fármacos , Transcriptoma
15.
Phytother Res ; 35(2): 954-973, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32893437

RESUMO

Blood-brain barrier (BBB) dysfunction has been implicated in Alzheimer's disease (AD) and is closely linked to the release of proinflammatory cytokines in brain capillary endothelial cells. We have previously reported that lychee seed polyphenols (LSP) exerted anti-neuroinflammatory effect. In this study, we aimed to explore the protective effect of LSP on BBB integrity. The monolayer permeability of bEnd.3 cells, and the mRNA level and protein expression of tight junction proteins (TJs), including Claudin 5, Occludin, and ZO-1, were examined. In addition, the inhibition of Aß(25-35)-induced NLRP3 inflammasome activation, and the autophagy induced by LSP were investigated by detecting the expression of NLRP3, caspase-1, ASC, LC3, AMPK, mTOR, and ULK1. Furthermore, the cognitive function and the expression of TJs, NLRP3, caspase-1, IL-1ß, and p62 were determined in APP/PS1 mice. The results showed that LSP significantly decreased the monolayer permeability and inhibited the NLRP3 inflammasome in Aß(25-35)-induced bEnd3 cells. In addition, LSP induced autophagy via the AMPK/mTOR/ULK1 pathway in bEnd.3 cells, and improved the spatial learning and memory function, increased the TJs expression, and inhibited the expression of NLRP3, caspase-1, IL-1ß, and p62 in APP/PS1 mice. Therefore, LSP protects BBB integrity in AD through inhibiting Aß(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Autofagia/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Litchi/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polifenóis/uso terapêutico , Sementes/química , Animais , Masculino , Camundongos , Camundongos Transgênicos , Polifenóis/farmacologia , Transfecção
16.
Oxid Med Cell Longev ; 2020: 6069354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832002

RESUMO

Naringin is a dihydroflavonoid, which is rich in several plant species used for herbal medicine. It has a wide range of biological activities, including antineoplastic, anti-inflammatory, antiphotoaging, and antioxidative activities. So it would be interesting to know if naringin has an effect on aging and aging-related diseases. We examined the effect of naringin on the aging of Caenorhabditis elegans (C. elegans). Our results showed that naringin could extend the lifespan of C. elegans. Moreover, naringin could also increase the thermal and oxidative stress tolerance, reduce the accumulation of lipofuscin, and delay the progress of aging-related diseases in C. elegans models of AD and PD. Naringin could not significantly extend the lifespan of long-lived mutants from genes in insulin/IGF-1 signaling (IIS) and nutrient-sensing pathways, such as daf-2, akt-2, akt-1, eat-2, sir-2.1, and rsks-1. Naringin treatment prolonged the lifespan of long-lived glp-1 mutants, which have decreased reproductive stem cells. Naringin could not extend the lifespan of a null mutant of the fox-head transcription factor DAF-16. Moreover, naringin could increase the mRNA expression of genes regulated by daf-16 and itself. In conclusion, we show that a natural product naringin could extend the lifespan of C. elegans and delay the progression of aging-related diseases in C. elegans models via DAF-16.


Assuntos
Envelhecimento/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Flavanonas/uso terapêutico , Fatores de Transcrição Forkhead/metabolismo , Longevidade/efeitos dos fármacos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Flavanonas/farmacologia
17.
Biogerontology ; 21(5): 669-682, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32506187

RESUMO

Aging is related to the lowered overall functioning and increased risk for various age-related diseases in humans. Tectochrysin is a flavonoid compound and rich in a traditional Chinese Medicine Alpinia oxyphylla Miq., which has antioxidant, anti-inflammatory, anti-cancer, anti-bacterial, anti-diarrhea, hepatoprotective, and neuro-protective effects. Therefore, we tested if tectochrysin had an effect on aging in Caenorhabditis elegans (C. elegans). Our results showed that tectochrysin could extend the lifespan of C. elegans by up to 21.0%, delay the age-related decline of body movement, improve high temperature-stress resistance and anti-infection capacity, and protected worms against Aß1-42-induced toxicity. Tectochrysin could not extend the lifespan of the mutants from genes daf-2, daf-16, eat-2, aak-2, skn-1, and hsf-1. Tectochrysin could increase the expression of DAF-16 regulated genes. The extension of lifespan by tectochrysin requires FOXO/DAF-16 and HSF-1. Overall, our findings suggest that tectochrysin may have a potential effect on extending lifespan and age-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Flavonoides/farmacologia , Longevidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo
18.
Cancers (Basel) ; 12(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941010

RESUMO

Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM, was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC) via the induction of apoptosis and autophagy in vitro and in vivo. In this study, we further found that the NLRP3 inflammasome was activated in PPVI administrated A549-bearing athymic nude mice. As is known to us, pyroptosis is an inflammatory form of caspase-1-dependent programmed cell death that plays an important role in cancer. By using A549 and H1299 cells, the in vitro effect and action mechanism by which PPVI induces activation of the NLRP3 inflammasome in NSCLC were investigated. The anti-proliferative effect of PPVI in A549 and H1299 cells was firstly measured and validated by MTT assay. The activation of the NLRP3 inflammasome was detected by using Hoechst33324/PI staining, flow cytometry analysis and real-time live cell imaging methods. We found that PPVI significantly increased the percentage of cells with PI signal in A549 and H1299, and the dynamic change in cell morphology and the process of cell death of A549 cells indicated that PPVI induced an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death. In addition, belnacasan (VX-765), an inhibitor of caspase-1, could remarkably decrease the pyroptotic cell death of PPVI-treated A549 and H1299 cells. Moreover, by detecting the expression of NLRP3, ASC, caspase-1, IL-1ß, IL-18 and GSDMD in A549 and h1299 cells using Western blotting, immunofluorescence imaging and flow cytometric analysis, measuring the caspase-1 activity using colorimetric assay, and quantifying the cytokines level of IL-1ß and IL-18 using ELISA, the NLRP3 inflammasome was found to be activated in a dose manner, while VX-765 and necrosulfonamide (NSA), an inhibitor of GSDMD, could inhibit PPVI-induced activation of the NLRP3 inflammasome. Furthermore, the mechanism study found that PPVI could activate the NF-κB signaling pathway via increasing reactive oxygen species (ROS) levels in A549 and H1299 cells, and N-acetyl-L-cysteine (NAC), a scavenger of ROS, remarkably inhibited the cell death, and the activation of NF-κB and the NLRP3 inflammasome in PPVI-treated A549 and H1299 cells. Taken together, these data suggested that PPVI-induced, caspase-1-mediated pyroptosis via the induction of the ROS/NF-κB/NLRP3/GSDMD signal axis in NSCLC, which further clarified the mechanism of PPVI in the inhibition of NSCLC, and thereby provided a possibility for PPVI to serve as a novel therapeutic agent for NSCLC in the future.

19.
Phytomedicine ; 65: 153088, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31627105

RESUMO

BACKGROUND: Emerging evidences indicate the important roles of autophagy in anti-oxidative stress, which is closely associated with cancer, aging and neurodegeneration. OBJECTIVE: In the current study, we aimed to identify autophagy inducers with potent anti-oxidative effect from traditional Chinese medicines (TCMs) in PC-12 cells and C. elegans. METHODS: The autophagy inducers were extensively screened in our herbal extracts library by using the stable RFP-GFP-LC3 U87 cells. The components with autophagic induction effect in Trillium tschonoskii Maxim. (TTM) was isolated and identified by using the autophagic activity-guided column chromatography and Pre-HPLC technologies, and MS and NMR spectroscopic analysis, respectively. The anti-oxidative effect of the isolated autophagy inducers was evaluated in H2O2-induced PC-12 cells and C. elegans models by measuring the viability of PC-12 cells and C. elegans, with quantitation on the ROS level in vitro and in vivo using H2DCFDA probe. RESULTS: The total ethanol extract of TTM was found to significantly increase the formation of GFP-LC3 puncta in stable RFP-GFP-LC3 U87 cells. One novel steroidal saponin 1-O-[2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl-(1→2)-4-O-acetyl-α-L-arabinopyranosyl]-21-Deoxytrillenogenin, (Deoxytrillenoside CA, DTCA) and one known steroidal saponin 1-O-[2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl-(1→2)-4-O-acetyl-α-L-arabinopyranosyl]-21-O-acetyl-epitrillenogenin (Epitrillenoside CA, ETCA) were isolated, identified and found to have novel autophagic effect. Both DTCA and ETCA could activate autophagy in PC-12 cells via the AMPK/mTOR/p70S6K signaling pathway in an Atg7-dependent. In addition, DTCA and ETCA could increase the cell viability and decrease the intracellular ROS level in H2O2-treated PC-12 cells and C. elegans, and the further study demonstrated that the induced autophagy contributes to their anti-oxidative effect. CONCLUSION: Our current findings not only provide information on the discovery of novel autophagy activators from TTM, but also confirmed the anti-oxidative effect of the components from TTM both in vitro and in vivo.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Dissacaridases/farmacologia , Saponinas/farmacologia , Trillium/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Proteína 7 Relacionada à Autofagia/metabolismo , Caenorhabditis elegans/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dissacaridases/química , Humanos , Peróxido de Hidrogênio/farmacologia , Células PC12 , Extratos Vegetais/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Yi Chuan ; 35(5): 666-72, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23732674

RESUMO

It is utmost important to cultivate potato variety with drought resistance to reduce arid loss by research progress on potato drought resistance molecular mechanism. A comparative study with differences in protein group analysis of potato drought resistance variety in Ninglang 182 leaves was carried out by using two-dimensional gel electrophoresis during drought and normal processing conditions.There were 12 differentially expressed protein spots identified by Electro-phoresis and MALDI-TOF-TOF/MS analysis. The function classification of these proteins results that the potato varieties to drought tolerance could be improved through the protection of photosynthesis and mitochondria, regulation of the signal transduction induced under environmental stress and regulation of plant tissue N and C transport system, these proteins expression were increased under drought.The results showed that these proteins are the drought resistance associated proteins of potato variety in Ninglang 182.This study provided a theoretical basis of the molecular mechanism of improving drought tolerance in order to expound the potato drought resistance variety through multiple paths and the level regulation.


Assuntos
Folhas de Planta/química , Proteínas de Plantas/química , Proteoma/química , Solanum tuberosum/fisiologia , Secas , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Solanum tuberosum/química , Solanum tuberosum/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA