Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1323674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076462

RESUMO

Background: Alzheimer's disease (AD), characterized by a severe decline in cognitive function, significantly impacts patients' quality of life. Traditional Chinese Medicine (TCM) presents notable advantages in AD treatment, closely linked to its regulation of intestinal flora. Nevertheless, a comprehensive exploration of the precise role of intestinal flora in AD remains lacking. Methods: We induced an AD model through bilateral intracerebroventricular injection of streptozotocin in rats. We divided 36 rats randomly into 6 groups: sham-operated, model, Danggui Shaoyao San (DSS), and 3 DSS decomposed recipes groups. Cognitive abilities were assessed using water maze and open field experiments. Nissl staining examined hippocampal neuron integrity. Western blot analysis determined synaptoprotein expression. Additionally, 16S rDNA high-throughput sequencing analyzed intestinal flora composition. Results: DSS and its decomposed recipe groups demonstrated improved learning and memory in rats (P<0.01). The open field test indicated increased central zone residence time and locomotor activity distance in these groups (P<0.05). Furthermore, the DSS and decomposed recipe groups exhibited reduced hippocampal neuronal damage and increased expression levels of synapsin I (P<0.05) and PSD95 (P<0.01) proteins. Alpha and Beta diversity analyses showed that the intestinal flora species richness and diversity in the DSS and decomposed recipe groups were similar to those in the sham-operated group, signifying a significant restorative effect (P<0.05). Conclusion: The combination of DSS and its decomposed recipes can reduce the abundance of harmful gut microbiota, leading to improvements in cognitive and learning abilities.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Ratos , Animais , Qualidade de Vida , Medicina Tradicional Chinesa
2.
Biomed Pharmacother ; 165: 115261, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549461

RESUMO

Enhancing the clearance of proteins associated with Alzheimer's disease (AD) emerges as a promising approach for AD therapeutics. This study explores the potential of Radix Stellariae, a traditional Chinese medicine, in treating AD. Utilizing transgenic C. elegans models of AD, we demonstrated that a 75% ethanol extract of Radix Stellariae (RSE) (at 50 µg/mL) effectively diminishes Aß and Tau protein expression, and alleviates their induced impairments including paralysis, behavioral dysfunction, neurotoxicity, and ROS accumulation. Additionally, RSE enhances the stress resistance of C. elegans. Further investigations revealed that RSE promotes autophagy, a critical cellular process for protein degradation, in these models. We found that inhibiting autophagy-related genes negated the neuroprotective effects of RSE, suggesting a central role for autophagy in the actions of RSE. In PC-12 cells, we observed that RSE not only inhibited Aß fibril formation but also promoted the degradation of AD-related proteins and reduced their cytotoxicity. Mechanistically, RSE was found to induce autophagy via modulating PI3K/AKT/mTOR and AMPK/mTOR signaling pathways. Importantly, inhibiting autophagy counteracted the beneficial effects of RSE on the clearance of AD-associated proteins. Moreover, we identified Dichotomine B, a ß-carboline alkaloid, as a key active constituent of RSE in mitigating AD pathology in C. elegans at concentrations ranging from 50 to 1000 µM. Collectively, our study presents novel discoveries that RSE alleviates AD pathology and toxicity primarily by inducing autophagy, both in vivo and in vitro. These findings open up new avenues for exploring the therapeutic potential of RSE and its active component, Dichotomine B, in treating neurodegenerative diseases like AD.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/metabolismo , Caenorhabditis elegans/metabolismo , Fosfatidilinositol 3-Quinases , Autofagia , Serina-Treonina Quinases TOR , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
3.
Phytother Res ; 37(10): 4639-4654, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394882

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without an effective cure. Natural products, while showing promise as potential therapeutics for AD, remain underexplored. AIMS: This study was conducted with the goal of identifying potential anti-AD candidates from natural sources using Caenorhabditis elegans (C. elegans) AD-like models and exploring their mechanisms of action. MATERIALS & METHODS: Our laboratory's in-house herbal extract library was utilized to screen for potential anti-AD candidates using the C. elegans AD-like model CL4176. The neuroprotective effects of the candidates were evaluated in multiple C. elegans AD-like models, specifically targeting Aß- and Tau-induced pathology. In vitro validation was conducted using PC-12 cells. To investigate the role of autophagy in mediating the anti-AD effects of the candidates, RNAi bacteria and autophagy inhibitors were employed. RESULTS: The ethanol extract of air-dried fruits of Luffa cylindrica (LCE), a medicine-food homology species, was found to inhibit Aß- and Tau-induced pathology (paralysis, ROS production, neurotoxicity, and Aß and pTau deposition) in C. elegans AD-like models. LCE was non-toxic and enhanced C. elegans' health. It was shown that LCE activates autophagy and its anti-AD efficacy is weakened with the RNAi knockdown of autophagy-related genes. Additionally, LCE induced mTOR-mediated autophagy, reduced the expression of AD-associated proteins, and decreased cell death in PC-12 cells, which was reversed by autophagy inhibitors (bafilomycin A1 and 3-methyladenine). DISCUSSION: LCE, identified from our natural product library, emerged as a valuable autophagy enhancer that effectively protects against neurodegeneration in multiple AD-like models. RNAi knockdown of autophagy-related genes and cotreatment with autophagy inhibitors weakened its anti-AD efficacy, implying a critical role of autophagy in mediating the neuroprotective effects of LCE. CONCLUSION: Our findings highlight the potential of LCE as a functional food or drug for targeting AD pathology and promoting human health.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Luffa , Fármacos Neuroprotetores , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Luffa/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Frutas/metabolismo , Autofagia , Modelos Animais de Doenças , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacologia
4.
Nutrients ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36986177

RESUMO

Targeting Nicotinamide adenine dinucleotide (NAD) metabolism has emerged as a promising anti-cancer strategy; we aimed to explore the health benefits of boosting NAD levels with nicotinamide riboside (NR) on hepatocellular carcinoma (HCC). We established three in vivo tumor models, including subcutaneous transplantation tumor model in both Balb/c nude mice (xenograft), C57BL/6J mice (allograft), and hematogenous metastatic neoplasm in nude mice. NR (400 mg/kg bw) was supplied daily in gavage. In-situ tumor growth or noninvasive bioluminescence were measured to evaluate the effect of NR on the HCC process. HepG2 cells were treated with transforming growth factor-ß (TGF-ß) in the absence/presence of NR in vitro. We found that NR supplementation alleviated malignancy-induced weight loss and metastasis to lung in nude mice in both subcutaneous xenograft and hematogenous metastasis models. NR supplementation decreased metastasis to the bone and liver in the hematogenous metastasis model. NR supplementation also significantly decreased the size of allografted tumors and extended the survival time in C57BL/6J mice. In vitro experiments showed that NR intervention inhibited the migration and invasion of HepG2 cells triggered by TGF-ß. In summary, our results supply evidence that boosting NAD levels by supplementing NR alleviates HCC progression and metastasis, which may serve as an effective treatment for the suppression of HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Humanos , Animais , NAD/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Niacinamida/farmacologia , Fator de Crescimento Transformador beta
5.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361951

RESUMO

As a typical ancient tetraploid, soybean (Glycine max) is an important oil crop species and plays a crucial role in supplying edible oil, plant protein and animal fodder worldwide. As global warming intensifies, the yield of soybean in the field is often strongly restricted by drought stress. SNF1-related protein kinase 2 (SnRK2) and type A protein phosphatase 2C (PP2C-A) family members are core components of the abscisic acid (ABA) signal transduction pathway in plants and have been suggested to play important roles in increasing plant tolerance to drought stress, but genetic information supporting this idea is still lacking in soybean. Here, we cloned the GmSnRK2s and GmPP2C-A family genes from the reference genome of Williams 82 soybean. The results showed that the expression patterns of GmSnRK2s and GmPP2C-As are spatiotemporally distinct. The expression of GmSnRK2s in response to ABA and drought signals is not strictly the same as that of Arabidopsis SnRK2 homologous genes. Moreover, our results indicated that the duplicate pairs of GmSnRK2s and GmPP2C-As have similar expression patterns, cis-elements and relationships. GmSnRK2.2 may have a distinct function in the drought-mediated ABA signaling pathway. Furthermore, the results of yeast two-hybrid (Y2H) assays between GmSnRK2s and GmPP2C-As revealed that GmSnRK2.17, GmSnRK2.18, GmSnRK2.22, GmPP2C5, GmPP2C7, GmPP2C10 and GmPP2C17 may play central roles in the crosstalk among ABA signals in response to drought stress. Furthermore, GmPP2C-As and GmSnRKs were targeted by miRNA and validated by degradome sequencing, which may play multiple roles in the crosstalk between ABA and drought signals and other stress signals. Taken together, these results indicate that GmSnRK2s and GmPP2C-As may play a variety of roles in the drought-mediated ABA signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Glycine max/genética , Glycine max/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Plantas/metabolismo , Estresse Fisiológico/genética , Proteínas de Arabidopsis/genética
6.
J Curr Glaucoma Pract ; 16(2): 74-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128084

RESUMO

Purpose: The study purpose was to assess patient survival after tube shunt implant or cyclodestructive procedure for neovascular glaucoma and to determine whether specific preoperative factors are predictive of survival. Materials and methods: A retrospective chart review was performed on patients with neovascular glaucoma who underwent tube shunt implant and/or cyclodestructive procedure between January 2002 and December 2019 at the Minneapolis Veterans Affairs Health Care System. Patient survival was compared to the age and gender-matched Minnesota population. Cox regression analyses were performed to evaluate preoperative parameters and survival. Results: Tube shunt alone was implanted in 30 eyes, cyclodestruction alone was performed in nine eyes, and two eyes underwent both (n = 41 eyes, 39 patients). The postoperative 5-year survival rate was 62% in neovascular glaucoma patients compared to 80% in controls. Survival did not differ significantly based on neovascular glaucoma etiology. Preoperative best-corrected visual acuity of the neovascular glaucoma-affected eye (p = 0.05) and Charlson Comorbidity Index (p = 0.02) were associated with survival, but preoperative maximum intraocular pressure, hemoglobin A1c, and creatinine were not. The mean intraocular pressure at 6 months postprocedure was 14 mm Hg for tube shunt and 27 mm Hg for cyclodestruction (p = 0.03). Conclusion: Neovascular glaucoma patients have reduced survival, but the majority survived at least 5-year postprocedure. Ophthalmologists should consider patient survival and factors predictive of survival when planning procedures for neovascular glaucoma. Clinical significance: Our findings provide an updated perspective on survival in the setting of neovascular glaucoma and can help ophthalmologists provide patient-centered and holistic care. How to cite this article: Zhou Y, Coleman S, Boysen J, et al. Survival in Patients with Neovascular Glaucoma Following Tube Shunt Implant or Cyclodestructive Procedure. J Curr Glaucoma Pract 2022;16(2):74-78.

7.
Nutrients ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615829

RESUMO

BACKGROUND: The epithelial tight junction is an important intestinal barrier whose disruption can lead to the release of harmful intestinal substances into the circulation and cause damage to systemic injury. The maintenance of intestinal epithelial tight junctions is closely related to energy homeostasis and mitochondrial function. Nicotinamide riboside (NR) is a NAD booster that can enhance mitochondrial biogenesis in liver. However, whether NR can prevent ethanol-induced intestinal barrier dysfunction and the underlying mechanisms remain unclear. METHODS: We applied the mouse NIAAA model (chronic plus binge ethanol feeding) and Caco-2 cells to explore the effects of NR on ethanol-induced intestinal barrier dysfunction and the underlying mechanisms. NAD homeostasis and mitochondrial function were measured. In addition, knockdown of SirT1 in Caco-2 cells was further applied to explore the role of SirT1 in the protection of NR. RESULTS: We found that ethanol increased intestinal permeability, increased the release of LPS into the circulation and destroyed the intestinal epithelial barrier structure in mice. NR supplementation attenuated intestinal barrier injury. Both in vivo and in vitro experiments showed that NR attenuated ethanol-induced decreased intestinal tight junction protein expressions and maintained NAD homeostasis. In addition, NR supplementation activated SirT1 activity and increased deacetylation of PGC-1α, and reversed ethanol-induced mitochondrial dysfunction and mitochondrial biogenesis. These effects were diminished with the knockdown of SirT1 in Caco-2 cells. CONCLUSION: Boosting NAD by NR alleviates ethanol-induced intestinal epithelial barrier damage via protecting mitochondrial function in a SirT1-dependent manner.


Assuntos
Etanol , NAD , Humanos , Camundongos , Animais , Etanol/farmacologia , NAD/metabolismo , Sirtuína 1/metabolismo , Células CACO-2 , Mitocôndrias/metabolismo , Niacinamida/farmacologia , Mucosa Intestinal/metabolismo , Suplementos Nutricionais
8.
Food Funct ; 12(21): 10524-10537, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569560

RESUMO

The release of lysosomal hydrolase into the cytoplasm is accompanied by several systems of apoptosis signal transduction, and the imbalance between cell viability and apoptosis induces tumorigenesis. Tea polysaccharides (TPs) are the main bioactive components in green tea with hopeful anti-tumor efficacy, while their mechanism is still unclear. Here, TPs significantly promoted the death of colon cancer cell line CT26. RNA-seq results showed that the signal pathways up-regulated by TPs included lysosome pathways, apoptosis, the release of mitochondrial pigment c and programmed cell death. Among them, the results of AO-EB and annexin V-FITC/PI double staining indicated that TPs significantly up-regulated apoptosis. In addition, TPs significantly disrupted the function of lysosomes, which would cause mitochondrial damage. Intriguingly, TPs treatment increased the expression of Bak1, cleaved caspase-9 and cleaved caspase-3, but decreased the level of Bcl-2 and mitochondrial membrane potential, which indicated that TPs induced mitochondrial-mediated apoptosis. Moreover, TPs ameliorated the reduced lysosomal numbers by Baf A1 (lysosomal inhibitor). Therefore, our data indicated that TPs targeted lysosomes and induced apoptosis by a lysosomal-mitochondrial pathway mediated caspase cascade, thereby inhibiting the proliferation of CT26 cells. In short, the data would help the development of TPs as potential cancer drug therapeutics.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Polissacarídeos/metabolismo , Chá/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos
9.
J Agric Food Chem ; 69(2): 686-697, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33369397

RESUMO

Targeting autophagy and lysosome may serve as a promising strategy for cancer therapy. Tea polysaccharide (TP) has shown promising antitumor effects. However, its mechanism remains elusive. Here, TP was found to have a significant inhibitory effect on the proliferation of colon cancer line HCT116 cells. RNA-seq analysis showed that TP upregulated autophagy and lysosome signal pathways, which was further confirmed through experiments. Immunofluorescence experiments indicated that TP activated transcription factor EB (TFEB), a key nuclear transcription factor modulating autophagy and lysosome biogenesis. In addition, TP inhibited the activity of mTOR, while it increased the expression of Lamp1. Furthermore, TP ameliorated the lysosomal damage and autophagy flux barrier caused by Baf A1 (lysosome inhibitor). Hence, our data suggested that TP repressed the proliferation of HCT116 cells by targeting lysosome to induce cytotoxic autophagy, which might be achieved through mTOR-TFEB signaling. In summary, TP may be used as a potential drug to overcome colon cancer.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Camellia sinensis/química , Neoplasias do Colo/fisiopatologia , Lisossomos/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Morte Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Células HCT116 , Humanos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-32328124

RESUMO

Xiaoyukang Jiaonang (XYK) is a Chinese patent medicine approved by the National Medical Product Administration which is used to treat intracranial hematoma in China. In this study, we observed the molecular mechanism of XYK in hypoxia-inducible factor 1α (HIF-1α), inflammation and angiogenesis of chronic subdural hematoma (CSDH). The CSDH model was made by using internal iliac vein blood of Wister rats, and rats were divided into sham group, CSDH group and XYK group. The rats in the XYK group were gavaged with Xiaoyukang Jiaonang (185 mg/kg) for 7 days, and rats in the CSDH group and sham group were gavaged with the same amount of physiological saline for 7 days. In the CSHD rat model, active inflammation and angiogenesis were observed around the hematoma. XYK promoted the ubiquitination and degradation of HIF-1α, and reduced the concentration of VEGF and the ratio of angiopoietin-1/angiopoietin-2. XYK reduced proinflammatory cytokines and increased anti-inflammatory cytokine. In tissue section, XYK reduced the size of the hematoma and membrane, and reduced vWF positive cells in membrane. Furthermore, the endothelial progenitor cells in blood decreased as well. Overall, XYK shows anti-inflammatory and antiangiogenesis effects which may relate to the degradation of HIF-1α.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA