Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(15): 43113-43125, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36648729

RESUMO

Allelochemicals have been shown to inhibit cyanobacterial blooms for several years. In view of the disadvantages of "direct-added" mode, natural and pollution-free tea polyphenolic allelochemicals with good inhibitory effect on cyanobacteria were selected to prepare sustained-release particles by microcapsule technology. Results showed that the encapsulation efficiency of tea polyphenols sustained-release particles (TPSPs) was 50.6% and the particle size ranged from 700 to 970 nm, which reached the nanoscale under optimum preparation condition. Physical and chemical properties of TPSPs were characterized to prove that tea polyphenols were well encapsulated and the particles had good thermal stability. The optimal dosage of TPSPs was determined to be 0.3 g/L, at which the inhibition rate on Microcystis aeruginosa in logarithmic growth period could be maintained above 95%. Simultaneous decrease in algal density and chlorophyll-a content indicated that the photosynthesis of algal cells was affected leading to cell death. Significant changes of antioxidant enzyme activities suggested that Microcystis aeruginosa's antioxidant systems had been disrupted. Furthermore, TPSPs increased the concentration of O2- which led to lipid peroxidation of cell membrane and a subsequent increase in malondialdehyde (MDA) content. Meanwhile, the protein content, nucleic acid content, and electrical conductivity in culture medium rose significantly indicating the cell membrane was irreversibly damaged. This work can provide a basis for the utilization of environmentally friendly algal suppressants.


Assuntos
Cianobactérias , Microcystis , Antioxidantes/farmacologia , Chá , Polifenóis/farmacologia , Preparações de Ação Retardada , Feromônios/farmacologia
2.
IEEE Trans Biomed Circuits Syst ; 9(6): 801-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26812735

RESUMO

In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 µm × 100 µm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Análise Serial de Tecidos/instrumentação , Animais , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Camundongos , Miócitos Cardíacos/citologia , Neurônios/citologia , Semicondutores , Análise Serial de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA