Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life Sci ; 336: 122347, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103728

RESUMO

AIMS: The increasing resistance to anti-seizure medications (ASMs) and the ambiguous mechanisms of epilepsy highlight the pressing demand for the discovery of pioneering lead compounds. Berberine (BBR) has received significant attention in recent years within the field of chronic metabolic disorders. However, the reports on the treatment of epilepsy with BBR are not systematic and the mechanism remains unclear. MAIN METHODS: In this study, the seizure behaviors of mice were recorded following subcutaneous injection of pentetrazol (PTZ). Non-targeted metabolomics was used to analyze the serum metabolites based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, multivariate statistical methods were used for metabolite identification and pathway analysis. Furthermore, network pharmacology, molecular docking, and quantitative real-time PCR assay were used for the target identification. KEY FINDINGS: BBR had anti-seizure effects on PTZ-induced seizure mice after long-term treatment. Tryptophan metabolism and phenylalanine metabolism were involved in regulating the therapeutic effects of BBR. SIGNIFICANCE: This study reveals the potential mechanism of BBR for epilepsy treatment based on non-targeted metabolomics and network pharmacology, which provides evidence for uncovering the pathogenesis of epilepsy, suggesting that BBR is a potential lead compound for anti-epileptic treatment.


Assuntos
Berberina , Epilepsia , Camundongos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Metabolômica/métodos , Pentilenotetrazol/toxicidade , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
2.
ACS Omega ; 6(2): 1391-1399, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490798

RESUMO

In the present study, apple pectin (AP) extracted from apple pomace was used to chelate with Fe(III) to synthesize an AP-Fe(III) complex. The obtained AP-Fe(III) complex was characterized by UV-vis spectroscopy, FTIR, XPS, and TG analysis. The Fe content in the AP-Fe(III) complex was determined to be 24.5%. Moreover, the reduction properties of the complex were also investigated. The AP-Fe(III) complex was found to be soluble in water and maintained stability in the pH range of 3-8. The complex was reduced to Fe(II) after 6 h. In addition, the AP-Fe(III) complex did not release iron ions in the simulated gastric fluid, and Fe release of the complex reached 96.5% after 4 h of digestion in simulated intestinal fluid. In particular, the antioxidant activity of the AP-Fe(III) complex against free DPPH and ABTS radicals was evaluated. The results obtained in this study demonstrate the potential of the AP-Fe(III) complex as a novel iron supplement.

3.
J Agric Food Chem ; 67(20): 5801-5819, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31050418

RESUMO

Aiming to evaluate the similarities and differences of the phytochemicals in different morphological regions of wild-simulated American ginseng (WsAG) root, the comprehensive metabolite profiling of main root (MR), branch root (BR), rhizome (RH), adventitious root (AR), and fibrous root (FR) was performed on the basis of ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for the first time. First, in the screening analysis, a total of 128 shared compounds were identified or tentatively characterized. The results showed that these five parts were all rich in phytochemicals and contained similar structure types. Second, in the untargeted metabolomic study, it was found that there indeed existed differences between the MR&BR group, RH&AR group, and FR part when considering the contents of every ingredient. A total of 31 (12, 7, and 12 for MR&BR, RH&AR, and FR, respectively) potential chemical markers enabling the differentiation were discovered. This comprehensive phytochemical profile study revealed the structural diversity of secondary metabolites and the similar/different patterns in five morphological regions of WsAG root. It could provide chemical evidence for the rational application of different parts of WsAG root.


Assuntos
Medicamentos de Ervas Chinesas/química , Panax/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metabolômica , Estrutura Molecular , Compostos Fitoquímicos/química , Raízes de Plantas/química , Rizoma/química
4.
Molecules ; 24(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889792

RESUMO

Aiming at revealing the structural diversity of secondary metabolites and the different patterns in wild-simulated American ginseng (WsAG) and field-grown American ginseng (FgAG), a comprehensive and unique phytochemical profile study was carried out. In the screening analysis, a total of 121 shared compounds were characterized in FgAG and WsAG, respectively. The results showed that both of these two kinds of American ginseng were rich in natural components, and were similar in terms of the kinds of compound they contained. Furthermore, in non-targeted metabolomic analysis, when taking the contents of the constituents into account, it was found that there indeed existed quite a difference between FgAG and WsAG, and 22 robust known biomarkers enabling the differentiation were discovered. For WsAG, there were 12 potential biomarkers including two ocotillol-type saponins, two steroids, six damarane-type saponins, one oleanane-type saponins and one other compound. On the other hand, for FgAG, there were 10 potential biomarkers including two organic acids, six damarane-type saponins, one oleanane-type saponin, and one ursane. In a word, this study illustrated the similarities and differences between FgAG and WsAG, and provides a basis for explaining the effect of different growth environments on secondary metabolites.


Assuntos
Metabolômica/métodos , Metanol/química , Panax/crescimento & desenvolvimento , Panax/metabolismo , Extratos Vegetais/metabolismo , Biomarcadores/metabolismo , Análise Discriminante , Análise dos Mínimos Quadrados , Extratos Vegetais/química , Análise de Componente Principal
5.
Molecules ; 24(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583458

RESUMO

Aiming at further systematically comparing the similarities and differences of the chemical components in ginseng of different ages, especially comparing the younger or the older and mountain-cultivated ginseng (MCG), 4, 5, 6-year-old cultivated ginseng (CG) and 12, 20-year-old MCG were chosen as the analytical samples in the present study. The combination of UPLC-QTOF-MSE, UNIFI platform and multivariate statistical analysis were developed to profile CGs and MCGs. By the screening analysis based on UNIFI, 126 chemical components with various structural types were characterized or tentatively identified from all the CG and MCG samples for the first time. The results showed that all the CG and MCG samples had the similar chemical composition, but there were significant differences in the contents of markers. By the metabolomic analysis based on multivariate statistical analysis, it was shown that CG4⁻6 years, MCG12 years and MCG20 years samples were obviously divided into three different groups, and a total of 17 potential age-dependent markers enabling differentiation among the three groups of samples were discovered. For differentiation from other two kinds of samples, there were four robust makers such as α-linolenic acid, 9-octadecenoic acid, linoleic acid and panaxydol for CG4⁻6 years, five robust makers including ginsenoside Re1, -Re2, -Rs1, malonylginsenoside Rb2 and isomer of malonylginsenoside Rb1 for MCG20 years, and two robust makers, 24-hydroxyoleanolic acid and palmitoleic acid, for MCG12 years were discovered, respectively. The proposed approach could be applied to directly distinguish MCG root ages, which is an important criterion for evaluating the quality of MCG. The results will provide the data for the further study on the chemical constituents of MCG.


Assuntos
Cromatografia Líquida de Alta Pressão , Metabolômica , Panax/química , Panax/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Biomarcadores , China , Cromatografia Líquida de Alta Pressão/métodos , Bases de Dados de Compostos Químicos , Meio Ambiente , Metaboloma , Metabolômica/métodos , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fatores de Tempo
6.
Huan Jing Ke Xue ; 39(7): 3090-3095, 2018 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-29962130

RESUMO

The status of treatment equipment, the emission characteristics, and the ozone formation potential (OFP) of volatile organic compounds (VOCs) for 11 typical enterprises, which were categorized into the 8 major VOC emission industries identified by the emission inventory of a typical city in the Yangtze River Delta, are discussed in this paper. There was a large difference in the removal efficiency of non-methane hydrocarbon (NMHC) between different treatment techniques, and even an increase in concentration occurred after some of the treatments. The current treatment equipment for VOCs needs further optimization. The emissions of NMHC, benzene, toluene, and xylene in most of the surveyed enterprises exceeded their corresponding standards, with toluene the worst offender. The most abundant compounds in the eight emission industries were aromatic hydrocarbons and oxygenated VOCs, whereas aromatic hydrocarbons contributed the most to ozone formation potential. There were large differences in emission characteristics of VOCs from different industries. Priority should be placed on the industries that have large OFP when control strategies of VOCs are considered.

7.
Molecules ; 23(7)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986394

RESUMO

Blood stasis syndrome (BSS) is one of the most common Chinese medicine patterns in coronary heart disease. Our previous work proved that Xueshuan Xinmaining Tablet (XXT) could treat blood stasis through regulating the expression of F13a1, Car1 and Tbxa2r. In the current study, the effect and mechanism of XXT on BSS was comprehensively and holistically investigated based on a metabolomics approach. Urine and plasma samples of 10 BBS rats treated with XXT (XT), 9 BSS model rats (BM) and 11 normal control (NC) rats were collected and then determined by UPLC-Q/TOP-MS. Multivariate analyses were applied to distinguish differentiate urinary and plasma metabolite patterns between three groups. Results showed that a clear separation of three groups was achieved. XT group was located between BM group and NC group, and showing a tendency of recovering to NC group, which was consistent with the results of hemorheological studies. Some significantly changed metabolites like cortexolone, 3α,21-dihydroxy-5ß-pregnane-11,20-dione and 19S-hete and leukotriene A4, chiefly involved in steroid hormone biosynthesis, arachidonic acid metabolism and lipid metabolism, were found and identified to explain the mechanism. These potential markers and their corresponding pathways will help explain the mechanism of BSS and XXT treatment. This work also proves that metabolomics is effective in traditional Chinese medicinal research.


Assuntos
Viscosidade Sanguínea/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos , Plasma/química , Urina/química , Animais , Modelos Animais de Doenças , Masculino , Medicina Tradicional Chinesa , Ratos , Ratos Sprague-Dawley , Comprimidos
8.
Molecules ; 22(8)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28769024

RESUMO

Platycodonis radix is extensively used for treating cough, excessive phlegm, sore throat, bronchitis and asthma in the clinic. Meanwhile, the stems, leaves and seeds of Platycodon grandiflorum (PG) have some pharmaceutical activities such as anti-inflammation and anti-oxidation effects, etc. These effects must be caused by the different metabolites in various parts of herb. In order to profile the different parts of PG, the ultra-high performance liquid chromatography combined with quadrupole time-of- flight mass spectrometry (UPLC-QTOF-MSE) coupled with UNIFI platform and multivariate statistical analyses was used in this study. Consequently, for the constituent screening, 73, 42, 35, 44 compounds were characterized from the root, stem, leaf and seed, respectively. The stem, leaf and seed contain more flavonoids but few saponins that can be easily discriminated in the root. For the metabolomic analysis, 15, 5, 7, 11 robust biomarkers enabling the differentiation among root, stem, leaf and seed, were discovered. These biomarkers can be used for rapid identification of four different parts of PG grown in northeast China.


Assuntos
Metaboloma , Platycodon/química , China , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/metabolismo , Humanos , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Platycodon/metabolismo , Saponinas/análise , Saponinas/metabolismo , Sementes/química , Sementes/metabolismo , Espectrometria de Massas por Ionização por Electrospray
9.
Artigo em Inglês | MEDLINE | ID: mdl-27795729

RESUMO

Yinhua Miyanling Tablet (YMT), the Chinese formula, has long been administrated in clinical practice for the treatment of acute pyelonephritis and acute urocystitis. In the current study, we aimed to investigate the anti-inflammatory effect of YMT in vitro and to evaluate the association between anti-inflammation and innate immune response. Human peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll density gradient centrifugation and then were stimulated by Lipopolysaccharide (LPS). The differential gene expression of inflammation-related genes after drug administration was assessed using PCR array, and the protein levels of differential genes were measured by ELISA and Western blot. The result showed that YMT significantly inhibited the expression of NLRP3, Caspase-1, and the downstream cytokine IL-1ß and suppressed the production of inflammatory mediators TNF-α, IL-6, IL-10, and MCP-1 in a dose-dependent manner compared to the LPS group (P < 0.01). The finding indicated that YMT exhibited anti-inflammatory effect in vitro by suppressing the NLRP3/Caspase-1 inflammasome, and that may have therapeutic potential for the treatment of inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA