Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 274: 116183, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471343

RESUMO

Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.


Assuntos
Arsênio , Extrato de Ginkgo , Ginkgo biloba , Humanos , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Arsênio/toxicidade , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
2.
Phytomedicine ; 128: 155432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518645

RESUMO

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Assuntos
Antineoplásicos Fitogênicos , Saponinas , Esteroides , Saponinas/farmacologia , Saponinas/química , Saponinas/uso terapêutico , Humanos , Esteroides/farmacologia , Esteroides/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos
3.
Food Sci Biotechnol ; 33(4): 935-944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371687

RESUMO

Arsenic can cause immune inflammation, which is the basis of arsenic-induced damage to multiple organs and systems. Forkhead box P3 (Foxp3)-labelled CD4+CD25+ regulatory T cells (Tregs) play an essential role in maintaining immune homeostasis. Nuclear factor-κb (NF-κB) and Interleukin-2 (IL-2) are critical regulators of Foxp3. Rosa roxburghii Tratt (RRT) is an edible medicinal plant with anti-inflammation effects. In this study, a control group (n = 41) and an arseniasis group (n = 209) were recruited, and screened subjects from the arseniasis patients for RRTJ (n = 46) or placebo (n = 43) to explore the possible mechanism by which RRT alleviates immune inflammation. The results indicated that RRTJ can inhibits NF-κB and increases IL-2, and alleviates the Foxp3-mediated Tregs imbalance in the peripheral blood of arseniasis patients. In summary, these findings suggest a novel intervention or therapeutic target for immune inflammation in arseniasis patients and provide new evidence that RRTJ inhibits immune inflammation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01384-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA