Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 40(4): 735-751, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33638657

RESUMO

KEY MESSAGE: GhMYB4 acts as a negative regulator in lignin biosynthesis, which results in alteration of cell wall integrity and activation of cotton defense response. Verticillium wilt of cotton (Gossypium hirsutum) caused by the soil-borne fungus Verticillium dahliae (V. dahliae) represents one of the most important constraints of cotton production worldwide. Mining of the genes involved in disease resistance and illuminating the molecular mechanisms that underlie this resistance is of great importance in cotton breeding programs. Defense-induced lignification in plants is necessary for innate immunity, and there are reports of a correlation between increased lignification and disease resistance. In this study, we present an example in cotton whereby plants with reduced lignin content also exhibit enhanced disease resistance. We identified a negative regulator of lignin synthesis, in cotton encoded in GhMYB4. Overexpression of GhMYB4 in cotton and Arabidopsis enhanced resistance to V. dahliae  with reduced lignin deposition. Moreover, GhMYB4 could bind the promoters of several genes involved in lignin synthesis, such as GhC4H-1, GhC4H-2, Gh4CL-4, and GhCAD-3, and impair their expression. The reduction of lignin content in GhMYB4-overexpressing cotton led to alterations of cell wall integrity (CWI) and released more oligogalacturonides (OGs) which may act as damage-associated molecular patterns (DAMPs) to stimulate plant defense responses. In support of this hypothesis, exogenous application with polygalacturonic acid (PGA) in cotton activated biosynthesis of jasmonic acid (JA) and JA-mediated defense against V. dahliae, similar to that described for cotton plants overexpressing GhMYB4. This study provides a new candidate gene for cotton disease-resistant breeding and an increased understanding of the relationship between lignin synthesis, OG release, and plant immunity.


Assuntos
Ascomicetos/patogenicidade , Gossypium/metabolismo , Gossypium/microbiologia , Lignina/biossíntese , Proteínas de Plantas/genética , Acetatos/farmacologia , Arabidopsis/genética , Arabidopsis/microbiologia , Ciclopentanos/farmacologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/efeitos dos fármacos , Gossypium/genética , Lignina/genética , Oxilipinas/farmacologia , Pectinas/farmacologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ácido Salicílico/farmacologia , Fatores de Transcrição/genética
2.
Sci Rep ; 5: 9608, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26043720

RESUMO

To understand the mechanisms of male sterility in cotton (Gossypium spp.), combined histological, biochemical and transcription analysis using RNA-Seq was carried out in the anther of the single-gene recessive genic male sterility system of male sterile line 1355A and male fertile line 1355B, which are near-isogenic lines (NILs) differing only in the fertility trait. A total of 2,446 differentially expressed genes were identified between the anthers of 1355AB lines, at three different stages of development. Cluster analysis and functional assignment of differentially expressed genes revealed differences in transcription associated with pollen wall and anther development, including the metabolism of fatty acids, glucose, pectin and cellulose. Histological and biochemical analysis revealed that a major cellular defect in the 1355A was a thicker nexine, consistent with the RNA-seq data, and further gene expression studies implicated differences in fatty acids synthesis and metabolism. This study provides insight into the phenotypic characteristics and gene regulatory network of the genic male sterile line 1355A in upland cotton.


Assuntos
Parede Celular , Gossypium/genética , Infertilidade das Plantas/genética , Pólen/genética , Parede Celular/genética , Parede Celular/metabolismo , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/metabolismo , Fenótipo , Transcriptoma
3.
Plant Cell Rep ; 31(12): 2177-88, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22890372

RESUMO

KEY MESSAGE: Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Ácidos Indolacéticos/farmacologia , Fatores de Transcrição/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Antocianinas/genética , Antocianinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Meios de Cultura/metabolismo , Ativação Enzimática , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Fosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA