Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 443: 138542, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281414

RESUMO

Shuixian is renowned for its "rock flavor". However, the variations in Shuixian flavor are unclear, as the discussion mainly considers regional factors and overlooks the role of microorganisms. Sensory evaluation of Shuixian from three different regions (Zhengyan, Banyan, and Waishan) revealed that each had unique flavor characteristics: a woody aroma with slight acidity, a strong floral and fruity aroma with good freshness, and a distinct sweet aroma and sourness. Metabolomic analyses have revealed that 2-methylpyrazine was a crucial component of the woody aroma, whereas other metabolites contributed to sweet aroma, freshness, and acidity. Moreover, examinations of the relationship between flavor metabolites and microorganisms revealed that fungi had a more pronounced influence on the metabolite content of Shuixian. The study evaluated the role of fermentation microorganisms in shaping the flavor based on Shuixian flavor analyses, contributing to further research into the "rock flavor", as well as potential microbial interventions.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Odorantes/análise , Metabolômica , Fermentação , Chá/metabolismo
2.
J Ethnopharmacol ; 319(Pt 3): 117358, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890806

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Inulae Herba (IH) is known as Jinfeicao recorded in Chinese Pharmacopoeia with effects of lowering qi and eliminating phlegm, and used for the treatment of pulmonary diseases. However, its protective mechanism on pulmonary diseases, especially acute lung injury (ALI), is still undefined. AIM OF THE STUDY: This study aimed to explore anti-inflammatory and anti-oxidation effects of IH and its underlying mechanism for treating ALI. MATERIALS AND METHODS: We constructed a lipopolysaccharide (LPS)-ALI mouse model to reveal the therapeutical effect of IH. Western blot, real-time quantitative PCR, flow cytometry, small RNA interference, immunohistochemical staining, and the dual-luciferase experiment were performed to study the mechanism of IH for treating ALI. RESULTS: IH attenuated LPS-mediated pathological changes (e.g. pneumonedema and pulmonary congestion) through inactivation of macrophages in an ALI mouse model. The result of flow cytometry demonstrated that IH regulated the homeostasis of M1 (CD80+CD206-) and M2 (CD80+CD206+) phenotype macrophages. Furthermore, IH suppressed mRNA expressions of M1 phenotype markers, such as iNOS and IL-6, whereas promoted mRNA expressions of M2 phenotype markers, such as ARG1 and RETNLA in LPS-mediated mice. Notably, IH targeted Keap1 to activate the Nrf2 receptor, exerting its anti-inflammatory and anti-oxidation effects proved by using immunohistochemical staining, dual-luciferase, and Keap1 knockdown technologies. CONCLUSION: These findings suggested that targeting Keap1 with IH alleviated LPS-mediated ALI, and it could serve as a herbal agent for developing anti-ALI drugs.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Luciferases , RNA Mensageiro
3.
IEEE Trans Med Imaging ; 42(10): 3025-3035, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37159321

RESUMO

The tumor-infiltrating lymphocytes (TILs) and its correlation with tumors have shown significant values in the development of cancers. Many observations indicated that the combination of the whole-slide pathological images (WSIs) and genomic data can better characterize the immunological mechanisms of TILs. However, the existing image-genomic studies evaluated the TILs by the combination of pathological image and single-type of omics data (e.g., mRNA), which is difficulty in assessing the underlying molecular processes of TILs holistically. Additionally, it is still very challenging to characterize the intersections between TILs and tumor regions in WSIs and the high dimensional genomic data also brings difficulty for the integrative analysis with WSIs. Based on the above considerations, we proposed an end-to-end deep learning framework i.e., IMO-TILs that can integrate pathological image with multi-omics data (i.e., mRNA and miRNA) to analyze TILs and explore the survival-associated interactions between TILs and tumors. Specifically, we firstly apply the graph attention network to describe the spatial interactions between TILs and tumor regions in WSIs. As to genomic data, the Concrete AutoEncoder (i.e., CAE) is adopted to select survival-associated Eigengenes from the high-dimensional multi-omics data. Finally, the deep generalized canonical correlation analysis (DGCCA) accompanied with the attention layer is implemented to fuse the image and multi-omics data for prognosis prediction of human cancers. The experimental results on three cancer cohorts derived from the Cancer Genome Atlas (TCGA) indicated that our method can both achieve higher prognosis results and identify consistent imaging and multi-omics bio-markers correlated strongly with the prognosis of human cancers.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias , Humanos , Linfócitos do Interstício Tumoral/patologia , Multiômica , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Prognóstico , Genômica
4.
Huan Jing Ke Xue ; 43(10): 4697-4705, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224155

RESUMO

To explore the resource utilization of phosphorus (P) in wastewater and industrial waste fly ash, we used an efficient composite material (CaO2@FA) for phosphorus removal by loading nano-CaO2 on the surface of fly ash as well as in the pores using the surface precipitation method. The results showed that the material had a larger specific surface area and porosity after loading CaO2 on the fly ash surface. The specific surface area increased to 4.641 m2·g-1, and the total pore volume was up to 0.025 cm3·g-1. The adsorption process of CaO2@FA on P could be described using the Langmuir isothermal adsorption model, and its maximum adsorption capacity was 185.776 mg·g-1(20℃). The adsorption mechanism was attributed to chemical precipitation, mainly the formation of calcium hydroxyphosphate. The enrichment efficiency of CaO2@FA composites on P was significantly higher than that of fly ash, and the efficiency was increasing with the increase in the dosage added. HCO3- and CO32- in the coexisting ions had a negative effect on P adsorption by the composites. The enrichment rate of P in domestic wastewater was up to 93% when the dosage of CaO2@FA composites was 2.0 g·L-1. The content of biological P in the recovered precipitates reached 1.658 mg·g-1. The soil improvement test showed that the biological P content in soil increased by 102.9% when the recovered precipitates were added into the soil. This indicated that the operating cost of recovering 100 mg of P by this composite was as low as 0.76 yuan.


Assuntos
Cinza de Carvão , Fósforo , Adsorção , Cálcio , Resíduos Industriais , Solo , Águas Residuárias
5.
Front Pharmacol ; 13: 933519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278204

RESUMO

Objective: To investigate the efficacy of Integrative medicine (IM), compare with Western medicine (WM), in the treatment of rheumatoid arthritis (RA) in a cohort study. Methods: This is a cohort study with recruitment of RA patients from 10 hospitals in China. The primary outcome was change in disease activity score 28 (DAS28) during 4 follow-up visits. Generalized estimating equation (GEE) models that controlled for variables were used to investigate a time trend and assess group differences in the primary outcome and secondary outcomes after propensity score matching (PSM). Results: A total of 3195 patients with RA received IM (n = 1379, 43.2%) or WM (n = 1816, 56.8%). Following 1:1 propensity score matching, 1,331 eligible patients prescribed IM were compared to 1,331 matched patients prescribed WM. The GEE analysis with PSM showed that the IM was more beneficial to significantly decrease the levels of VAS, PGA and PhGA (VAS: odds ratio (OR), 0.76; 95% CI, 0.63-0.92; p = 0.004; PGA: OR, 0.76; 95% CI, 0.64-0.92; p = 0.007; and PhGA: OR, 0.77; 95% CI, 0.64, 0.93; p = 0.004), and reduce DAS28 (OR, 0.84; 95% CI, 0.73-0.98; p = 0.030) in the per-protocol population. Conclusion: This study suggests that compare to WM, IM has advantages in improving RA-related outcomes. However, the statistical significance might not reveal significant clinical difference. Further studies should be focused on specific treatment strategies and/or disease stages.

6.
Phytomedicine ; 106: 154400, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36049428

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin (PF) was found to exhibit renal protection from diabetic kidney disease (DKD) in previous trials, but its specific mechanism remains to be elucidated. AIM OF THE STUDY: This study furtherly explored the specific mechanism of PF in protect podocyte injury in DKD. MATERIALS AND METHODS: We observed the effects of PF on renal tissue and podocytes in DKD by constructing the vitro and vivo models after measuring the pharmacokinetic characteristics of PF. Target proteins of PF were found through target prediction, and verified by molecular docking, CESTA, and SPR, and then furtherly explored the downstream regulation mechanism related to podocyte autophagy and apoptosis by network prediction and co-immunoprecipitation. Finally, by using the target protein inhibitor in vivo and knocking down the target protein gene in vitro, it was verified that PF played a role in regulating autophagy and apoptosis through the target protein in diabetic nephropathy. RESULTS: This study found that in STZ-induced mice model, PF could improve the renal biochemical and pathological damage and podocyte injure (p < 0.05), upregulate autophagy activity (p < 0.05), but inhibit apoptosis (p < 0.01). Vascular endothelial growth factor receptor 2 (VEGFR2), predicted as the target of PF, directly bind with PF reflected by molecular docking and surface plasmon resonance detection. Animal studies demonstrated that VEGFR2 inhibitors have a protective effect similar to that of PF on DKD. Network prediction and co-immunoprecipitation further confirmed that VEGFR2 was able to bind PIK3CA to regulate PI3K-AKT signaling pathway. Furthermore, PF downregulated the phosphorylation of PI3K and AKT (p < 0.05). In vitro, similarly to autophagy inhibitors, PF was also found to improve podocyte markers (p < 0.05) and autophagy activity (p < 0.05), decrease caspase 3 protein (p < 0.05) and further inhibited VEGFR2-PI3K-AKT activity (p < 0.05). Finally, the results of VEGFR2 knockdown were similar to the effect of PF in HG-stimulated podocytes. CONCLUSION: In conclusion, PF restores autophagy and inhibits apoptosis by targeting the VEGFR2-mediated PI3K-AKT pathway to improve renal injury in DKD, that provided a theoretical basis for PF treatment in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Apoptose , Autofagia , Caspase 3/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico , Nefropatias Diabéticas/metabolismo , Glucosídeos , Camundongos , Simulação de Acoplamento Molecular , Monoterpenos , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Phytomedicine ; 107: 154380, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150346

RESUMO

BACKGROUND: Acute lung injury (ALI) is a severe respiratory disease characterized by diffuse lung interstitial and respiratory distress and pulmonary edema with a mortality rate of 35%-40%. Inula japonica Thunb., known as "Xuan Fu Hua" in Chinese, is a traditional Chinese medicine Inulae Flos to use for relieving cough, eliminating expectorant, and preventing bacterial infections in the clinic, and possesses an anti-pulmonary fibrosis effect. However, the effect and action mechanism of I. japonica on ALI is still unclear. PURPOSE: This study aimed to investigate the protective effect and underlying mechanism of total flavonoids of I. japonica (TFIJ) in the treatment of ALI. STUDY DESIGN AND METHODS: A mouse ALI model was established through administration of LPS by the intratracheal instillation. Protective effects of TFIJ in the inflammation and oxidative stress were studied in LPS-induced ALI mice based on inflammatory and oxidative stress factors, including MDA, MPO, SOD, and TNF-α. Lipid metabolomics, bioinformatics, Western blot, quantitative real-time PCR, and immunohistochemistry were performed to reveal the potential mechanism of TFIJ in the treatment of ALI. RESULTS: TFIJ significantly alleviated the interstitial infiltration of inflammatory cells and the collapse of the alveoli in LPS-induced ALI mice. Lipid metabolomics demonstrated that TFIJ could significantly affect the CYP2J/sEH-mediated arachidonic acid metabolism, such as 11,12-EET, 14,15-EET, 8,9-DHET, 11,12-DHET, and 14,15-DHET, revealing that sEH was the potential target of TFIJ, which was further supported by the recombinant sEH-mediated the substrate hydrolysis in vitro (IC50 = 1.18 µg/ml). Inhibition of sEH by TFIJ alleviated the inflammatory response and oxidative stress via the MAPK, NF-κB, and Nrf2 signaling pathways. CONCLUSION: These results demonstrated that TFIJ could suppress the sEH activity to stabilize the level of EETs, allowing the alleviation of the pathological course of lung injury in LPS-treated mice, which suggested that TFIJ could serve as the potential agents in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Inula , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ácido Araquidônico/metabolismo , Expectorantes/efeitos adversos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Phytomedicine ; 107: 154377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116200

RESUMO

BACKGROUND: Acute lung injury (ALI) is a life-threatening lung disease and characterized by pulmonary edema and atelectasis. Inula japonica Thunb. is a commonly used traditional Chinese medicine for the treatment of lung diseases. However, the potential effect and mechanism of total terpenoids of I. japonica (TTIJ) on ALI remain obscure. PURPOSE: This study focused on the protective effect of TTIJ on lipopolysaccharide (LPS)-induced ALI in mice and its potential mechanism. STUDY DESIGN AND METHODS: A mouse model of ALI was established by intratracheal instillation of LPS to investigate the protective effect of TTIJ. RNA-seq and bioinformatics were then performed to reveal the underlying mechanism. Finally, western blot and real-time qPCR were used to verify the effects of TTIJ on the inflammation and oxidative stress. RESULTS: TTIJ notably attenuated LPS-induced histopathological changes of lung. The RNA-seq result suggested that the protective effect of TTIJ on LPS-induced ALI were associated with the Toll-like receptor 4 (TLR4) and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathways. Pretreatment with TTIJ significantly reduced the inflammation and oxidative stress via regulating levels of pro-inflammatory and anti-oxidative cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), and glutathione (GSH), in LPS-induced ALI mice. TTIJ treatment could suppress the cyclooxygenase-2 (COX-2) expression level and the phosphorylation of p65, p38, ERK, and JNK through the inactivation of the MAPK/NF-κB signaling pathway in a TLR4-independent manner. Meanwhile, TTIJ treatment upregulated expression levels of proteins involved in the Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1), NAD(P)H: quinoneoxidoreductase-1 (NQO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM), via activating the Nrf2 receptor, which was confirmed by the luciferase assay. CONCLUSION: TTIJ could activate the Nrf2 receptor to alleviate the inflammatory response and oxidative stress in LPS-induced ALI mice, which suggested that TTIJ could serve as the potential agent in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Inula , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NAD/metabolismo , NAD/farmacologia , NAD/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Terpenos/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Phytomedicine ; 101: 154125, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525236

RESUMO

BACKGROUND: Parkinson's disease (PD) is a multi-factorial neurodegenerative disease affecting motor function of patients. The hall markers of PD are dopaminergic neuron loss in the midbrain and the presence of intra-neuronal inclusion bodies mainly composed of aggregation-prone protein alpha-synuclein (α-syn). Ubiquitin-proteasome system (UPS) is a multi-step reaction process responsible for more than 80% intracellular protein degradation. Impairment of UPS function has been observed in the brain tissue of PD patients. PDE4 inhibitors have been shown to activate cAMP-PKA pathway and promote UPS activity in Alzheimer's disease model. α-mangostin is a natural xanthonoid with broad biological activities, such as antioxidant, antimicrobial and antitumour activities. Structure-based optimizations based on α-mangostin produced a potent PDE4 inhibitor, 4e. Herein, we studied whether 4e could promote proteasomal degradation of α-syn in Parkinson's disease models through PKA activation. METHODS: cAMP Assay was conducted to quantify cAMP levels in samples. Model UPS substrates (Ub-G76V-GFP and Ub-R-GFP) were used to monitor UPS-dependent activity. Proteasome activity was investigated by short peptide substrate, Suc-LLVY-AMC, cleavage of which by the proteasome increases fluorescence sensitivity. Tet-on WT, A30P, and A53T α-syn-inducible PC12 cells and primary mouse cortical neurons from A53T transgenic mice were used to evaluate the effect of 4e against α-syn in vitro. Heterozygous A53T transgenic mice were employed to assess the effect of 4e on the clearance of α-syn in vivo, and further validations were applied by western blotting and immunohistochemistry. RESULTS: Taken together, α-mangostin derivative 4e, a PDE4 inhibitor, efficiently activated the cAMP/PKA pathway in neuronal cells, and promoted UPS activity as evidenced by enhanced degradation of UPS substrate Ub-G76V-GFP and Ub-R-GFP, as well as elevated proteasomal enzyme activity. Interestingly, 4e dramatically accelerated degradation of inducibly-expressed WT and mutant α-syn in PC12 cells, in a UPS dependent manner. Besides, 4e consistently activated PKA in primary neuron and A53T mice brain, restored UPS inhibition and alleviated α-syn accumulation in the A53T mice brain. CONCLUSIONS: 4e is a natural compound derived highly potent PDE4 inhibitor. We revealed its potential effect in promoting UPS activity to degrade pathogenic proteins associated with PD.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doenças Neurodegenerativas , Doença de Parkinson , Inibidores da Fosfodiesterase 4 , Animais , Neurônios Dopaminérgicos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Inibidores da Fosfodiesterase 4/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Xantonas , alfa-Sinucleína/metabolismo
11.
Cells ; 11(3)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159288

RESUMO

(1) Background: Ginkgo biloba extract (GBE) has been widely used to treat central nervous system and cardiovascular diseases. Accumulating evidence has revealed the therapeutic potential of GBE against Alzheimer's disease (AD); however, no systematic evaluation has been performed; (2) Methods: a total of 17 preclinical studies and 20 clinical trials assessing the therapeutic effects of GBE against AD were identified from electronic databases. The data in the reports were extracted to conduct a meta-analysis of the AD-related pathological features or symptoms; (3) Results: For the preclinical reports, 45 animals treated with GBE, in six studies, were subjected to cognitive function assessments by the Morris water maze. GBE was shown to reduce the escape latencies in several studies, in both rats and mice (I2 > 70%, p < 0.005). For the clinical trials, eight trials, including 2100 individuals, were conducted. The results show that GBE improved the SKT and ADAS-Cog scores in early-stage AD patients after high doses and long-term administration; (4) Conclusions: GBE displayed generally consistent anti-AD effects in animal experiments, and it might improve AD symptoms in early-stage AD patients after high doses and long-term administration. A lack of sample size calculations and the poor quality of the methods are two obvious limitations of the studies. Nevertheless, the preclinical and clinical data suggest that further large-scale clinical trials may be needed in order to examine the effects of long-term GEB administration on early-stage AD.


Assuntos
Doença de Alzheimer , Ginkgo biloba , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Animais , Cognição , Humanos , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos
12.
Environ Sci Pollut Res Int ; 29(33): 50059-50069, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35226268

RESUMO

Paddy soil Cd contamination and the related accumulation risk in rice grains have attracted global attention. The application of selenium and humic substances is considered to be a cost-effective Cd mitigation measure. However, the effect of a combined application of the two materials remains unclear. Therefore, a 2-season pot experiment was conducted, wherein sodium selenite (Se) and biochemical fulvic acid (BFA) were applied alone and together. Paddy soils with two levels of Cd contamination were used. The results indicate that Se application alone considerably decreased the rice grain Cd content by 36.1-48.7% compared to the control rice grain Cd concentration, which was above the food safety limit (0.2 mg kg-1). Although the application of BFA alone decreased the soil pH, it also increased the soil CaCl2 extractable Cd content by 0.2 to 19.3% and had a limited effect on Cd in the rice grains. The combined application of Se and BFA did not affect the soil pH or the CaCl2 extractable Cd, and more effectively reduced the Cd contents of the rice grains by 50.2 to 57.1%, except for the control rice grain Cd content, which was below the limit. The combined application of Se and BFA also inhibited Se accumulation in rice grains, maintaining the Se content at a safe level (0.33-0.58 mg kg-1) compared to Se application alone. The effects of reducing the Cd content of rice grains while safely increasing their Se contents could persist for at least two seasons. Therefore, the combined application of Se and BFA should be recommended to mitigate Cd contamination risks in Cd-contaminated paddy soil.


Assuntos
Oryza , Selênio , Poluentes do Solo , Benzopiranos , Cádmio/análise , Cloreto de Cálcio , Grão Comestível/química , Oryza/química , Selênio/análise , Solo/química , Poluentes do Solo/análise
13.
Planta Med ; 88(13): 1190-1198, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34875697

RESUMO

Phloridzin is a lead compound of the prestigious antidiabetic gliflozins. The present study found that phloridzin highly accumulated in Malus rockii Rehder. The content of phloridzin in M. rockii was the highest among wild plants, with the percentage of 15.54% in the dry leaves. The structure of phloridzin was revised by proton exchange experiments and extensive 2D NMR spectra. Phloridzin exhibited significant hypolipidemic activity in golden Syrian hamsters maybe by increasing the expression of CYP7A1, at the doses of 50 mg/kg and 200 mg/kg. The total performance of anti-hyperlipidemic effect of phloridzin may be superior to that of lovastatin, though lovastatin was more active than phloridzin. In addition, phloridzin exhibited moderate antimalarial activity with inhibition ratio of 31.3 ± 10.9% at a dose of 25 mg/kg/day, and showed moderate analgesic activity with 28.0% inhibition at a dose of 50 mg/kg.


Assuntos
Antimaláricos , Malus , Inibidores do Transportador 2 de Sódio-Glicose , Florizina/farmacologia , Florizina/química , Malus/química , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Prótons , Lovastatina/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-34394391

RESUMO

OBJECTIVE: This study aimed to clarify the mechanism of Fei-Xian formula (FXF) in the treatment of pulmonary fibrosis based on network pharmacology analysis combined with molecular docking validation. METHODS: Firstly, ingredients in FXF with pharmacological activities, together with specific targets, were identified based on the BATMA-TCM and TCMSP databases. Then, targets associated with pulmonary fibrosis, which included pathogenic targets as well as those known therapeutic targets, were screened against the CTD, TTD, GeneCards, and DisGeNet databases. Later, Cytoscape was employed to construct a candidate component-target network of FXF for treating pulmonary fibrosis. In addition, for nodes within the as-constructed network, topological parameters were calculated using CytoHubba plug-in, and the degree value (twice as high as the median degree value for all the nodes) was adopted to select core components as well as core targets of FXF for treating pulmonary fibrosis, which were subsequently utilized for constructing the core network. Furthermore, molecular docking study was carried out on those core active ingredients together with the core targets using AutoDock Vina for verifying results of network pharmacology analysis. At last, OmicShare was employed for enrichment analysis of the core targets. RESULTS: Altogether 12 active ingredients along with 13 core targets were identified from our constructed core component-target network of FXF for the treatment of pulmonary fibrosis. As revealed by enrichment analysis, the 13 core targets mostly concentrated in regulating biological functions, like response to external stimulus (from oxidative stress, radiation, UV, chemical substances, and virus infection), apoptosis, cell cycle, aging, immune process, and protein metabolism. In addition, several pathways, like IL-17, AGE-RAGE, TNF, HIF-1, PI3K-AKT, NOD-like receptor, T/B cell receptor, and virus infection-related pathways, exerted vital parts in FXF in the treatment of pulmonary fibrosis. CONCLUSIONS: FXF can treat pulmonary fibrosis through a "multicomponent, multitarget, and multipathway" mean. Findings in this work lay foundation for further exploration of the FXF mechanism in the treatment of pulmonary fibrosis.

15.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205249

RESUMO

The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.


Assuntos
Alcaloides/farmacologia , Produtos Biológicos/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Amiloide/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/metabolismo , Medicina Tradicional Chinesa/métodos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
16.
Acta Biomater ; 129: 245-257, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34082093

RESUMO

Effective and noninvasive diagnosis and prompt treatment of early-stage hepatocellular carcinoma (HCC) are urgently needed to reduce its mortality rate. Herein, the integration of high-resolution diagnostic second near-infrared (NIR-II) photoacoustic computed tomography (PACT) and imaging-guided targeted photothermal ablation of orthotopic small HCC (SHCC) is presented for the first time, which was enabled by a plasmonic platinum (Pt)-doped polydopamine melanin-mimic nanoagent. As designed, an antibody-modified nanoagent (designated Pt@PDA-c) with a plasmonic blackbody-like NIR absorption and superior photothermal conversion efficiency (71.3%) selectively targeted and killed CXCR4-overexpressing HCC (HepG2) cells, which was validated in in vitro experiments. The targeted accumulation properties of Pt@PDA-c in vivo were previously recognized by demonstrating effective NIR-II PA imaging and photothermal ablation in a subcutaneous HCC mouse model. Subsequently, with real-time quantitative guidance by PACT for the accurate diagnosis of intraabdominal SHCC (approximately 4 mm depth), the effective and noninvasive photothermal ablation of SHCCs was successfully demonstrated in an orthotopic tumor-bearing mouse model without damaging adjacent liver tissues. These results show a great potential of NIR-II PACT-guided noninvasive photothermal therapy as an innovative phototheranostic approach and expand the biomedical applications of melanin-mimic materials. STATEMENT OF SIGNIFICANCE: In this paper, we report the first diagnostic NIR-II photoacoustic computed tomography (PACT)-guided noninvasive photothermal ablation of small hepatocellular carcinoma (SHCC) located in deep tissues in orthotopic tumor-bearing mice; this process is empowered by a polydopamine-based melanin-mimic tumor-targeting nanoagent doped with plasmonic platinum that provides superior NIR-II (1064 nm) absorption and photothermal conversion efficiency of 71.3%. Following surface modification with anti-CXCR4 antibodies, the nanoagent (namely Pt@PDA-c) can selectively target CXCR4-overexpressed HepG2 carcinoma cells and tumor lesions, and serve as the theranostic agent for both NIR-II PACT-based diagnosis of orthotopic SHCC (diameter less than 5 mm) and efficient NIR-II PTT in vivo. This study may also extend the potential of melanin-derived blackbody materials for optical-biomedical and water distillation applications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Melaninas , Camundongos , Fototerapia , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X
17.
Phytomedicine ; 87: 153578, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34038839

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative motor disorders, and is characterized by the presence of Lewy bodies containing misfolded α-synuclein (α-syn) and by selective degeneration of midbrain dopamine neurons. Studies have shown that upregulation of ubiquitin-proteasome system (UPS) activity promotes the clearance of aggregation-prone proteins such as α-syn and Tau, so as to alleviate the neuropathology of neurodegenerative diseases. PURPOSE: To identify and investigate lycorine as a UPS enhancer able to decrease α-syn in transgenic PD models. METHODS: Dot blot was used to screen α-syn-lowering compounds in an inducible α-syn overexpression cell model. Inducible wild-type (WT) and mutant α-syn-overexpressing PC12 cells, WT α-syn-overexpressing N2a cells and primary cultured neurons from A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vitro. Heterozygous A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vivo. mCherry-GFP-LC3 reporter was used to detect autophagy-dependent degradation. Ub-R-GFP and Ub-G76V-GFP reporters were used to detect UPS-dependent degradation. Proteasome activity was detected by fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC (Suc-LLVY-AMC). RESULTS: Lycorine significantly promoted clearance of over-expressed WT and mutant α-syn in neuronal cell lines and primary cultured neurons. More importantly, 15 days' intraperitoneal administration of lycorine effectively promoted the degradation of α-syn in the brains of A53T transgenic mice. Mechanistically, lycorine accelerated α-syn degradation by activating cAMP-dependent protein kinase (PKA) to promote proteasome activity. CONCLUSION: Lycorine is a novel α-syn-lowering compound that works through PKA-mediated UPS activation. This ability to lower α-syn implies that lycorine has the potential to be developed as a pharmaceutical for the treatment of neurodegenerative diseases, such as PD, associated with UPS impairment and protein aggregations.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doença de Parkinson/tratamento farmacológico , Fenantridinas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/genética
18.
Biosci Rep ; 41(3)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33645621

RESUMO

An-Chuan Granule (ACG), a traditional Chinese medicine (TCM) formula, is an effective treatment for asthma but its pharmacological mechanism remains poorly understood. In the present study, network pharmacology was applied to explore the potential mechanism of ACG in the treatment of asthma. The tumor necrosis factor (TNF), Toll-like receptor (TLR), and Th17 cell differentiation-related, nucleotide-binding oligomerization domain (NOD)-like receptor, and NF-kappaB pathways were identified as the most significant signaling pathways involved in the therapeutic effect of ACG on asthma. A mouse asthma model was established using ovalbumin (OVA) to verify the effect of ACG and the underlying mechanism. The results showed that ACG treatment not only attenuated the clinical symptoms, but also reduced inflammatory cell infiltration, mucus secretion and MUC5AC production in lung tissue of asthmatic mice. In addition, ACG treatment notably decreased the inflammatory cell numbers in bronchoalveolar lavage fluid (BALF) and the levels of pro-inflammatory cytokines (including IL-6, IL-17, IL-23, TNF-alpha, IL-1beta and TGF-beta) in lung tissue of asthmatic mice. In addition, ACG treatment remarkably down-regulated the expression of TLR4, p-P65, NLRP3, Caspase-1 and adenosquamous carcinoma (ASC) in lung tissue. Further, ACG treatment decreased the expression of receptor-related orphan receptor (RORγt) in lung tissue but increased that of Forkhead box (Foxp3). In conclusion, the above results demonstrate that ACG alleviates the severity of asthma in a ´multi-compound and multi-target' manner, which provides a basis for better understanding of the application of ACG in the treatment of asthma.


Assuntos
Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Asma/imunologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fatores de Transcrição Forkhead/metabolismo , Interleucinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mucina-5AC/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Mol Med Rep ; 23(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179084

RESUMO

Lung cancer is the most prevalent and observed type of cancer in Xuanwei County, Yunnan, South China. Lung cancer in this area is called Xuanwei lung cancer. However, its pathogenesis remains largely unknown. To date, a number of studies have shown that microRNA (miR)­218 functions as a tumor suppressor in multiple types of cancer. However, the role of miR­218 and its regulatory gene network in Xuanwei lung cancer have yet to be investigated. The current study identified that the expression levels of miR­218 in XWLC­05 cells were markedly lower compared with those in immortalized lung epithelial BEAS­2B cells. The present study also demonstrated that overexpression of miR­218 could decrease cell proliferation, invasion, viability and migration in Xuanwei lung cancer cell line XWLC­05 and NSCLC cell line NCI­H157. Additionally, the results revealed that overexpression of miR­218 could induce XWLC­05 and NCI­H157 cell apoptosis by arresting the cell cycle at G2/M phase. Finally, the present study demonstrated that overexpression of miR­218 could lead to a significant increase in phosphatase and tensin homolog (PTEN) and YY1 transcription factor (YY1), and a decrease in B­cell lymphoma 2 (BCL­2) and BMI1 proto­oncogene, polycomb ring finger (BMI­1) at the mRNA and protein level in XWLC­05 and NCI­H157 cell lines. However, we did not observe any remarkable difference in the roles of miR­218 and miR­218­mediated regulation of BCL­2, BMI­1, PTEN and YY1 expression in the progression of Xuanwei lung cancer. In conclusion, miR­218 could simultaneously suppress cell proliferation and tumor invasiveness and induce cell apoptosis by increasing PTEN and YY1 expression, while decreasing BCL­2 and BMI­1 in Xuanwei lung cancer. The results demonstrated that miR­218 might serve a vital role in tumorigenesis and progression of Xuanwei lung cancer and overexpression of miR­218 may be a novel approach for the treatment of Xuanwei lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação para Baixo , Neoplasias Pulmonares/genética , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , China , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
20.
Artigo em Chinês | WPRIM | ID: wpr-906252

RESUMO

Objective:To study the mechanism of astragaloside Ⅳ in the treatment of ischemic stroke by means of network pharmacology. Method:The targets of astragaloside Ⅳ were predicted using Swiss Target Prediction platform, and the targets of ischemic stroke were retrieved using GeneCards, Therapeutic Target Database (TTD), Traditional Chinese Medicine Integrated Database (TCMID) and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) databases. The potential targets of astragaloside Ⅳ acting on ischemic stroke were obtained by the intersection of the targets of astragaloside Ⅳ and ischemic stroke. STRING platform was used to build protein-protein interaction (PPI) network, and eigenvalues were calculated through network topology analysis to screen core targets. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the related targets in DAVID database. Finally, molecular docking verification was conducted to further clarify the core targets of astragaloside Ⅳ acting on ischemic stroke. Result:The 44 common targets were obtained after the intersection of the targets of astragaloside Ⅳ and ischemic stroke. PPI network topology analysis showed that RAC-alpha serine/threonine-protein kinase (Akt1), renin (REN), epidermal growth factor receptor (EGFR), vascular endothlial growth factor A (VEGFA) and neuronal proto-oncogene tyrosine-protein kinase (SRC) were the core targets of astragaloside Ⅳ in the treatment of ischemic stroke. Enrichment analysis results of KEGG pathway showed that the pathways of astragaloside Ⅳ acting on ischemic stroke involved the neuroactive ligand-receptor interaction pathway, cGMP-PKG signaling pathway, calcium signaling pathway, Rap1 signaling pathway, PI3K/Akt signaling pathway, etc. Conclusion:Astragaloside Ⅳ may promote angiogenesis and inhibit platelet activity by acting on Akt1, REN, EGFR, VEGFA, SRC, thus improving cerebral blood flow. It can also inhibit the apoptosis of ischemic brain tissue cells and inflammation to reduce the damage of nerve function, and finally treat ischemic stroke. This study provides ideas and guidance for further exploring the mechanism of astragaloside Ⅳ in the treatment of ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA