Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 20(1): 2304393, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38497413

RESUMO

Current influenza vaccines could be augmented by including recombinant neuraminidase (rNA) protein antigen to broaden protective immunity and improve efficacy. Toward this goal, we investigated formulation conditions to optimize rNA physicochemical stability. When rNA in sodium phosphate saline buffer (NaPBS) was frozen and thawed (F/T), the tetrameric structure transitioned from a "closed" to an "open" conformation, negatively impacting functional activity. Hydrogen deuterium exchange experiments identified differences in anchorage binding sites at the base of the open tetramer, offering a structural mechanistic explanation for the change in conformation and decreased functional activity. Change to the open configuration was triggered by the combined stresses of acidic pH and F/T. The desired closed conformation was preserved in a potassium phosphate buffer (KP), minimizing pH drop upon freezing and including 10% sucrose to control F/T stress. Stability was further evaluated in thermal stress studies where changes in conformation were readily detected by ELISA and size exclusion chromatography (SEC). Both tests were suitable indicators of stability and antigenicity and considered potential critical quality attributes (pCQAs). To understand longer-term stability, the pCQA profiles from thermally stressed rNA at 6 months were modeled to predict stability of at least 24-months at 5°C storage. In summary, a desired rNA closed tetramer was maintained by formulation selection and monitoring of pCQAs to produce a stable rNA vaccine candidate. The study highlights the importance of understanding and controlling vaccine protein structural and functional integrity.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Neuraminidase/genética , Vacinas Sintéticas/genética , RNA
2.
Biol Pharm Bull ; 37(2): 268-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492724

RESUMO

Over-expression of the Candida drug resistance gene CDR1 is a common mechanism generating azole-resistant Candida albicans in clinical isolates. CDR1 is transcriptionally activated through the binding of the transcription factor Tac1p to the cis-acting drug-responsive element (DRE) in its promoter. We previously demonstrated that the combination of fluconazole (FLC) and berberine (BBR) produced significant synergy when used against FLC-resistant C. albicans in vitro. In this study, we found that BBR inhibited both the up-regulation of CDR1 mRNA and the transport function of Cdr1p induced by fluphenazine (FNZ). Further, electrophoretic mobility shift assays suggested that the transcription activation complex of protein-DRE was disrupted by BBR, and electrospray ionization mass spectrometry analysis showed that BBR bound to the DRE of CDR1. Thus we propose that BBR inhibits the FNZ-induced transcriptional activation of CDR1 in C. albicans by blocking transcription factor binding to the DRE of CDR1. These results contribute to our understanding of the mechanism of synergistic effect of BBR and FLC.


Assuntos
Antifúngicos/farmacologia , Berberina/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Flufenazina/efeitos adversos , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Extratos Vegetais/farmacologia , Candida albicans/metabolismo , Sinergismo Farmacológico , Flufenazina/uso terapêutico , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , RNA Mensageiro/metabolismo , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA