Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479258

RESUMO

BACKGROUND: The damage of chemotherapy drugs to immune function and intestinal mucosa is a common side effect during chemotherapy. Astragalus polysaccharides (APS) exhibit immunomodulatory properties and are recognized for preserving the integrity of the human intestinal barrier. Nevertheless, their application and mechanisms of action in chemotherapy-induced immune damage and intestinal barrier disruption remain insufficiently explored. PURPOSE: This study delved into investigating how APS mitigates chemotherapy-induced immune dysfunction and intestinal mucosal injury, while also providing deeper insights into the underlying mechanisms. METHODS: In a chemotherapy mice model induced by 5-fluorouracil (5-Fu), the assessment of APS's efficacy encompassed evaluations of immune organ weight, body weight, colon length, and histopathology. The regulation of different immune cells in spleen was detected by flow cytometry. 16S rRNA gene sequencings, ex vivo microbiome assay, fecal microbiota transplantation (FMT), and targeted metabolomics analysis were applied to explore the mechanisms of APS effected on chemotherapy-induced mice. RESULTS: APS ameliorated chemotherapy-induced damage to immune organs and regulated immune cell differentiation disorders, including CD4+T, CD8+T, CD19+B, F4/80+CD11B+ macrophages. APS also alleviated colon shortening and upregulated the expression of intestinal barrier proteins. Furthermore, APS significantly restored structure of gut microbiota following chemotherapy intervention. Ex vivo microbiome assays further demonstrated the capacity of APS to improve 5-Fu-induced microbiota growth inhibition and compositional change. FMT demonstrated that the regulation of gut microbiota by APS could promote the recovery of immune functions and alleviate shortening of the colon length. Remarkably, APS significantly ameliorated the imbalance of linoleic acid (LA) and α-linolenic acid in polyunsaturated fatty acid (PUFA) metabolism. Further in vitro experiments showed that LA could promote splenic lymphocyte proliferation. In addition, both LA and DGLA down-regulated the secretion of NO and partially up-regulated the percentage of F4/80+CD11B+CD206+ cells. CONCLUSION: APS can effectively ameliorate chemotherapy-induced immune damage and intestinal mucosal disruption by regulating the composition of the gut microbiota and further restoring PUFA metabolism. These findings indicate that APS can serve as an adjuvant to improve the side effects such as intestinal and immune damage caused by chemotherapy.


Assuntos
Astrágalo , Ácidos Graxos Insaturados , Fluoruracila , Microbioma Gastrointestinal , Polissacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Camundongos , Astrágalo/química , Ácidos Graxos Insaturados/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Transplante de Microbiota Fecal , Colo/efeitos dos fármacos
2.
Nat Commun ; 14(1): 5451, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673856

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/genética , Ácidos e Sais Biliares , Citoplasma , Camundongos Knockout , Ácidos Graxos
3.
Phytomedicine ; 91: 153693, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34403877

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is an obesity-related metabolic disease that is highly associated with gut dysbiosis and inflammation. A botanical dietary supplement, mainly containing an herbal pair of white peony root and licorice as well as grape seeds and broccoli extracts (WLT), exerts auxiliary protection against chemical liver injury. However, it is unclear whether WLT protects against the development of NAFLD induced by a high energy diet. PURPOSE: To investigate the protective role of WLT against NAFLD development induced by a high-fat and high-sucrose (HFHS) diet and its mechanism of action. METHODS: We investigated the anti-NAFLD effects of WLT on a HFHS diet-induced NAFLD C57BL/6J mouse model by detecting the hepatic triglyceride (TG) level, performing histological examination of the liver tissue, and evaluating glucose tolerance and systemic inflammation. Then, we analyzed the impact of WLT on gut microbiota by 16S rRNA gene sequencing, followed by fecal microbiota transplantation. Furthermore, we performed hepatic transcriptomic analysis of mice with or without WLT treatment using the RNA sequencing approach. RESULTS: Our results showed that WLT supplement attenuated body weight gain, hepatic steatosis, glucose tolerance, and systemic inflammation in HFHS-fed mice. Moreover, WLT supplement altered the composition of gut microbiota, which contributed at least in part, to the anti-NAFLD effect. Meanwhile, WLT improved the intestinal integrity and comprehensively modulated the expression of hepatic genes in HFHS mice, particularly reducing the expression of genes in the toll-like receptor-mediated inflammatory pathway. CONCLUSION: WLT is protective against NAFLD formation induced by an HFHS diet, and its effect is associated with the modulation of gut microbiota and inflammation, highlighting the potential of WLT to reduce the risk of metabolic disorders as a functional dietary supplement.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Glycyrrhiza , Hepatopatia Gordurosa não Alcoólica , Paeonia , Extratos Vegetais , Animais , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Glycyrrhiza/química , Inflamação/tratamento farmacológico , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Paeonia/química , Extratos Vegetais/farmacologia , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA