Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 6(12): 6048-59, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25533012

RESUMO

Despite accumulating data showing the various neurological actions of vitamin D (VD), its effects on brain neurochemistry are still far from fully understood. To further investigate the neurochemical influence of VD, we assessed neurotransmitter systems in the brain of rats following 6-week calcitriol (1,25-dihydroxyvitamin D) administration (50 ng/kg/day or 100 ng/kg/day). Both the two doses of calcitriol enhanced VDR protein level without affecting serum calcium and phosphate status. Rats treated with calcitriol, especially with the higher dose, exhibited elevated γ-aminobutyric acid (GABA) status. Correspondingly, the mRNA expression of glutamate decarboxylase (GAD) 67 was increased. 100 ng/kg of calcitriol administration also increased glutamate and glutamine levels in the prefrontal cortex, but did not alter glutamine synthetase (GS) expression. Additionally, calcitriol treatment promoted tyrosine hydroxylase (TH) and tryptophan hydroxylase 2 (TPH2) expression without changing dopamine and serotonin status. However, the concentrations of the metabolites of dopamine and serotonin were increased and the drug use also resulted in a significant rise of monoamine oxidase A (MAOA) expression, which might be responsible to maintain the homeostasis of dopaminergic and serotonergic neurotransmission. Collectively, the present study firstly showed the effects of calcitriol in the major neurotransmitter systems, providing new evidence for the role of VD in brain function.


Assuntos
Calcitriol/farmacologia , Hipocampo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Cálcio/sangue , Dopamina/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Homeostase/efeitos dos fármacos , Masculino , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Neurotransmissores/sangue , Neurotransmissores/farmacologia , Fósforo/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-25477997

RESUMO

Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were involved in the antidepressive effects of exercise, in this study, we assessed the effects of swimming exercise on hippocampal mRNA expression of several classes of the growth factors (BDNF, GDNF, NGF, NT-3, FGF2, VEGF, and IGF-1) and peptides (VGF and NPY) in rats exposed to chronic unpredictable mild stress (CUMS). Our study demonstrated that the swimming training paradigm significantly induced the expression of BDNF and BDNF-regulated peptides (VGF and NPY) and restored their stress-induced downregulation. Additionally, the exercise protocol also increased the antiapoptotic Bcl-xl expression and normalized the CUMS mediated induction of proapoptotic Bax mRNA level. Overall, our data suggest that swimming exercise has antidepressant effects, increasing the resistance to the neural damage caused by CUMS, and both BDNF and its downstream neurotrophic peptides may exert a major function in the exercise related adaptive processes to CUMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA