Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carbohydr Polym ; 268: 118237, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127219

RESUMO

The application of traditional chemotherapy drugs for lung cancer has obvious limitations, such as toxic side effects, uncontrolled drug-release, poor bioavailability, and drug-resistance. Thus, to address the limitations of free drugs and improve treatment effects, we developed novel T7 peptide-modified nanoparticles (T7-CMCS-BAPE, CBT) based on carboxymethyl chitosan (CMCS), which is capable of targeted binding to the transferrin receptor (TfR) expressed on lung cancer cells and precisely regulating drug-release according to the pH value and reactive oxygen species (ROS) level. The results showed that the drug-loading content of docetaxel (DTX) and curcumin (CUR) was approximately 7.82% and 6.48%, respectively. Good biosafety was obtained even when the concentration was as high as 500 µg/mL. More importantly, the T7-CMCS-BAPE-DTX/CUR (CBT-DC) complexes exhibited better in vitro and in vivo anti-tumor effects than DTX monotherapy and other nanocarriers loaded with DTX and CUR alone. Furthermore, we determined that CBT-DC can ameliorate the immunosuppressive micro-environment to promote the inhibition of tumor growth. Collectively, the current findings help lay the foundation for combinatorial lung cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Curcumina/uso terapêutico , Docetaxel/uso terapêutico , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Quitosana/análogos & derivados , Quitosana/metabolismo , Quitosana/farmacocinética , Quitosana/toxicidade , Curcumina/química , Curcumina/farmacocinética , Docetaxel/química , Docetaxel/farmacocinética , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Pulmão/patologia , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Nanomedicine ; 15: 7745-7762, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116498

RESUMO

BACKGROUND: Although single-drug chemotherapy is still an effective treatment for esophageal cancer, its long-term application is limited by severe side-effects, poor bioavailability, and drug-resistance. Increasing attention has been paid to nanomedicines because of their good biological safety, targeting capabilities, and high-efficiency loading of multiple drugs. Herein, we have developed a novel T7 peptide-modified pH-responsive targeting nanosystem co-loaded with docetaxel and curcumin for the treatment of esophageal cancer. METHODS: Firstly, CM-ß-CD-PEI-PEG-T7/DTX/CUR (T7-NP-DC) was synthesized by the double emulsion (W/O/W) method. The targeting capacity of the nanocarrier was then investigated by in vitro and in vivo assays using targeted (T7-NP) and non-targeted nanoparticles (NP). Furthermore, the anti-tumor efficacy of T7-NP-DC was studied using esophageal cancer cells (KYSE150 and KYSE510) and a KYSE150 xenograft tumor model. RESULTS: T7-NP-DC was synthesized successfully and its diameter was determined to be about 100 nm by transmission electron microscopy and dynamic light scattering. T7-NP-DC with docetaxel and curcumin loading of 10% and 6.1%, respectively, had good colloidal stability and exhibited pH-responsive drug release. Good biosafety was observed, even when the concentration was as high as 800 µg/mL. Significant enhancement of T7-NP uptake was observed 6 hours after intravenous injection compared with NP. In addition, the therapeutic efficacy of T7-NP-DC was better than NP-DC and docetaxel in terms of growth suppression in the KYSE150 esophageal cancer model. CONCLUSION: The findings demonstrated that T7-NP-DC is a promising, non-toxic, and controllable nanoparticle that is capable of simultaneous delivery of the chemotherapy drug, docetaxel, and the Chinese Medicine, curcumin, for treatment of esophageal cancer. This novel T7-modified targeting nanosystem releases loaded drugs when exposed to the acidic microenvironment of the tumor and exerts a synergistic anti-tumor effect. The data indicate that the nanomaterials can safely exert synergistic anti-tumor effects and provide an excellent therapeutic platform for combination therapy of esophageal cancer.


Assuntos
Curcumina/química , Curcumina/farmacologia , Docetaxel/química , Docetaxel/farmacologia , Portadores de Fármacos/química , Neoplasias Esofágicas/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Curcumina/administração & dosagem , Curcumina/uso terapêutico , Docetaxel/administração & dosagem , Docetaxel/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Nanomedicina , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Polietilenoimina/química , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA