Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 815235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264954

RESUMO

Human UDP-glucuronosyltransferase 1A1 (hUGT1A1) is one of the most essential phase II enzymes in humans. Dysfunction or strong inhibition of hUGT1A1 may result in hyperbilirubinaemia and clinically relevant drug/herb-drug interactions (DDIs/HDIs). Recently, a high-throughput fluorescence-based assay was constructed by us to find the compounds/herbal extracts with strong inhibition against intracellular hUGT1A1. Following screening of over one hundred of herbal products, the extract of Ginkgo biloba leaves (GBL) displayed the most potent hUGT1A1 inhibition in HeLa-UGT1A1 cells (Hela cells overexpressed hUGT1A1). Further investigations demonstrated that four biflavones including bilobetin, isoginkgetin, sciadopitysin and ginkgetin, are key constituents responsible for hUGT1A1 inhibition in living cells. These biflavones potently inhibit hUGT1A1 in both human liver microsomes (HLM) and living cells, with the IC50 values ranging from 0.075 to 0.41 µM in living cells. Inhibition kinetic analyses and docking simulations suggested that four tested biflavones potently inhibit hUGT1A1-catalyzed NHPN-O-glucuronidation in HLM via a mixed inhibition manner, showing the K i values ranging from 0.07 to 0.74 µM. Collectively, our findings uncover the key constituents in GBL responsible for hUGT1A1 inhibition and decipher their inhibitory mechanisms against hUGT1A1, which will be very helpful for guiding the rational use of GBL-related herbal products in clinical settings.

2.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3759-3769, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893568

RESUMO

Schisandra is the mature fruit of Schisandra chinensis(known as "north Schisandra") or S. shenanthera(known as "south Schisandra"). S. chinensis contains a variety of lignans, volatile oils, polysaccharides, organic acids and other chemical constituents; among them, lignans are recognized as the characteristic active components. Clinical studies have found that Schisandra and Schisandra-related products have a better effect in the prevention and treatment of viral hepatitis, drug-induced liver injury, liver cirrhosis, liver failure and other liver diseases. Modern pharmacological studies have demonstrated that Schisandra has a variety of pharmacological activities, such as anti-inflammation, antioxidation, anticancer, regulation of nuclear receptor, antivirus, regulation of cytochrome P450 enzyme, inhibition of liver cell apoptosis and promotion of liver regeneration. This paper reviews the studies about the applications and mechanism of Schisandra in the prevention and treatment of liver diseases, in the expectation of providing guidance for the development of hepatoprotective drugs from Schisandra and the clinical applications of Schisandra-related products.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Lignanas/análise , Schisandra , Frutas/química , Humanos , Substâncias Protetoras
3.
Chin J Nat Med ; 17(11): 858-870, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31831132

RESUMO

Psoraleae Fructus (the dried fruits of Psoralea corylifolia), one of the most frequently used Chinese herbs in Asian countries, has a variety of biological activities. In clinical settings, Psoraleae Fructus or Psoraleae Fructus-related herbal medicines frequently have been used in combination with a number of therapeutic drugs for the treatment of various human diseases, such as leukoderma, rheumatism and dysentery. The use of Psoraleae Fructus in combination with drugs has aroused concern of the potential risks of herb-drug interactions (HDI) or herb-endobiotic interactions (HEI). This article reviews the interactions between human drug-metabolizing enzymes and the constituents of Psoraleae Fructus; the major constituents in Psoraleae Fructus, along with their chemical structures and metabolic pathways are summarized, and the inhibitory and inductive effects of the constituents in Psoraleae Fructus on human drug-metabolizing enzymes (DMEs), including target enzyme(s), its modulatory potency, and mechanisms of action are presented. Collectively, this review summarizes current knowledge of the interactions between the Chinese herb Psoraleae Fructus and therapeutic drugs in an effort to facilitate its rational use in clinical settings, and especially to avoid the potential risks of HDI or HEI through human DMEs.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Glucuronosiltransferase/metabolismo , Interações Ervas-Drogas , Psoralea/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas em Tandem
4.
Fitoterapia ; 137: 104199, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31175950

RESUMO

Human carboxylesterase 1 (CES1), primarily expressed in the liver and adipocytes, is responsible for the hydrolysis of endogenous esters (such as cholesteryl esters and triacylglycerols) and the metabolism of xenobiotic esters (such as clopidogrel and oseltamivir), thus participates in physiological and pathological processes. In this study, a series of natural pentacyclic triterpenoids were collected and their inhibitory effects against CES1 and CES2 were assayed using D-luciferin methyl ester (DME) and N-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de] isoquinolin- 6-yl)- 2-chloroacetamide (NCEN) as specific optical substrate for CES1, and CES2, respectively. To this end, betulinic acid (BA) was found with strong inhibitory effect on CES1 (IC50, 15 nM) and relative high selectivity over CES2 (>2400-fold). Primary structure-activity relationships (SAR) analysis and docking simulations revealed that the carboxyl group at the C-28 site of BA is very essential for CES1 inhibition. The inhibition kinetic analyses demonstrated that BA was a potent competitive inhibitor against CES1-mediated DME hydrolysis. Further investigation on the inhibitory effect of BA in living cells (HepG2) based assays demonstrated that BA displayed potent inhibitory effects on intracellular CES1 activities, with the low IC50 value of 1.30 µM. These results demonstrated that BA is potent and highly selective CES1 inhibitor, which might be used as the promising tool for exploring the biological functions of CES1 in complex biological systems.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Triterpenos/farmacologia , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA