Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 83: 127410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38377660

RESUMO

BACKGROUND: The effectiveness of selenium (Se) supplementation on glycemic control is disparate. OBJECTIVE: This study aims to evaluate the effects of different dosages of Se diets on the blood glucose in type 2 diabetes mellitus (T2DM, db/db) and normal (db/m) mice. METHODS: The db/db and db/m mice were fed with different dosages of Se supplemented diets (0, 0.1, 0.3, 0.9, 2.7 mg/kg) for 12 weeks, respectively. Se concentrations of tissues, physical and biochemical characteristics, oxidative stress indexes and gene expression related to glucose, lipid metabolism and Se transporters of liver were detected. RESULTS: The Se concentrations in tissues were related to the dosages of Se supplementation in db/db (blood: slope=11.69, r = 0.924; skeletal muscle: slope=0.36, r = 0.505; liver: slope=22.12, r = 0.828; kidney: slope=11.81, r = 0.736) and db/m mice (blood: slope=19.89, r = 0.876; skeletal muscle: slope=2.80, r = 0.883; liver: slope=44.75, r = 0.717; kidney: slope=60.15, r = 0.960). Compared with Se2.7 group, the fasting blood glucose (FBG) levels of Se0.1 and Se0.3 group were decreased at week3 in db/db mice. Compared with control (Se0) group, the FBG levels of Se2.7 group were increased from week6 to week12 in db/m mice. The oral glucose tolerance test (OGTT) showed that the area under the curve (AUC) of Se0.3 group was lower than that of Se0.9 and Se2.7 group in db/m mice. Furthermore, compared with control group, the malondialdehyde (MDA) level in skeletal muscle of Se0.1 group was decreased, while that of Se2.7 group was increased in db/db mice; the glutathione peroxidase (GPx) activity in skeletal muscle of Se0.3, Se0.9 and Se2.7 group was increased both in db/db and db/m mice. For db/db mice, glucose-6-phosphatase catalytic (G6pc) expression of other groups were lower and fatty acid synthase (Fasn) expression of Se0.9 group were lower compared with Se0.3 group. For db/m mice, compared with Se0.3 group, (peroxisome proliferative activated receptor gamma coactivator 1 alpha) Pgc-1α expression of control and Se0.9 group were higher; (phosphoenolpyruvate carboxykinase 1) Pck1 expression of Se0.1, Se0.9, and Se2.7 group were higher. CONCLUSION: Low dosages (0.1 and 0.3 mg/kg) of Se supplementation exerted beneficial effects on FBG levels and glucose tolerance through regulating hepatic glycolysis and gluconeogenesis and inhibit the oxidative stress while high dosages of Se (0.9 and 2.7 mg/kg) supplementation enhanced FBG levels, impaired glucose tolerance and aggravate oxidative stress.


Assuntos
Diabetes Mellitus Tipo 2 , Selênio , Camundongos , Animais , Glicemia/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos , Suplementos Nutricionais , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Glucose/metabolismo
2.
Food Funct ; 14(18): 8453-8466, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37622658

RESUMO

Oat ß-glucan (OG) has been shown to improve intestinal microecology in gestational diabetes mellitus (GDM), but the effect on fetal intestine health is unknown. Herein, we aimed to investigate the effects of OG supplementation during gestation in GDM dams on fetal intestinal immune development. OG was supplemented one week before mating until the end of the experiment. GDM rats were made with a high-fat diet (HFD) with a minimal streptozotocin (STZ) dose. The fetal intestines were sampled at gestation day (GD) 19.5, and the intestinal morphology, chemical barrier molecules, intraepithelial immune cell makers, and levels of inflammatory cytokines were investigated. The results showed that OG supplementation alleviated the decrease of the depth of fetal intestinal villi and crypts, the number of goblet cells (GCs), protein expression of mucin-1 (Muc1) and Muc2, the mRNA levels of Gpr41, Gpr43, and T cell markers, and increased the number of paneth cells (PCs), the mRNA levels of defensin-6 (defa6), and macrophage (Mø) marker and the expression of cytokines induced by GDM. In addition, OG supplementation alleviated the function of immune cell self-proliferation, chemotaxis and assembly capabilities, protein, fat, folic acid, and zinc absorption damaged by GDM. As indicated by these findings, OG supplementation before and during pregnancy improved the fetal intestinal chemical barriers, immune cells, cytokines, and the metabolism of nutrients to protect the fetal intestinal immunity.


Assuntos
Diabetes Gestacional , Feminino , Gravidez , Humanos , Animais , Ratos , Intestinos , Citocinas , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA