Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 17: 3103-3128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868820

RESUMO

Purpose: This study was conducted to explore the mechanism of Sijunzi Decoction (SJZ) in the treatment of ulcerative colitis (UC). Methods: The study aimed to investigate the active components and targets of SJZ in the treatment of UC by screening databases such as TCMSP, GeneCards, OMIM, Distinct, TTD, and Drugbank. An online Venn tool, Cytoscape 3.7.2, and Autodock Tools were used to analyze the components and targets. The study also used a mouse model of UC to further investigate the effects of SJZ. HE staining, immunofluorescence, ELISA, qPCR, and Western blot were used to detect various indices. Results: Eighty-three active components and 112 action targets were identified from SJZ, including 67 targets for treating UC-related NETs. The five core targets identified were AKT1, JUN, IL1B, PTGS2, and TNF, and molecular docking studies indicated that the five targets were well-docked with ginsenoside Rh2, isoflavones, and formononetin. Animal experiments demonstrated that SJZ could alleviate various parameters such as weight, colon length, spleen index, disease activity index, and intestinal pathology of the UC mice. Immunofluorescence and Western blot showed that SJZ could reduce the expression of IL1B and TNF in intestinal neutrophils while increasing the expression of Occludin. Cellular immunofluorescence suggests that SJZ can reduce the expression of TNF and IL1B in NETs. The qPCR results also suggested that SJZ could inhibit TNF signal. Furthermore, ELISA results suggested that SJZ could inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6) while promoting the expression of anti-inflammatory cytokines (IL-10, IL-37, TGF-ß). Conclusion: SJZ treats UC by reducing the content of intestinal NETs, with primary targets on the NETs being IL1B and TNFand suppress TNF signal. The practical components of SJZ may be ginsenoside Rh2, isoflavones, and formononetin.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Armadilhas Extracelulares , Isoflavonas , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Silício , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Citocinas
2.
Int J Biol Macromol ; 220: 1318-1328, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089085

RESUMO

Encapsulation technology can increase the stability and maintain the volatile active substances of plant essential oils. In the present study, tree essential oil (TTO) was encapsulated with polylactic acid (PLA) modified by octenyl succinic anhydride chitosan (OSA-CS) as shell materials to form long-term antibacterial and pH-responsive microcapsules. The PLA/OSA-CS@TTO microcapsules were characterized by high performance liquid chromatography (HPLC), scanning electron microscopy (SEM) and antibacterial performance testing. The results showed that the average particle size of microcapsules was 10 µm, and the encapsulation efficiency and drug loading efficiency of TTO reached 81.5 % and 60.3 %. After 4800 min of release in media at different pH (5 and 7) still sequestered 55.32 % and 56.74 % of TTO which approved the shell of microcapsules responded to different pH values. The microcapsules remained stable for 80 days after drying, and preserving 39.7 % of the core material. The morphology of PLA/OSA-CS@TTO microcapsules revealed that the PLA/OSA-CS@TTO microcapsules presented smooth and firm structure. Antibacterial test for staphylococcus aureus of those microcapsules implied that the bacteriostatic rate reached 100 % after 72 h. Bio-based macromolecular modification strategies can provide inspiration for the development of green microcapsules.


Assuntos
Quitosana , Óleos Voláteis , Óleo de Melaleuca , Antibacterianos/química , Antibacterianos/farmacologia , Cápsulas/química , Quitosana/química , Concentração de Íons de Hidrogênio , Óleos Voláteis/química , Óleos de Plantas , Poliésteres , Anidridos Succínicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA