RESUMO
BACKGROUND: Diabetic nephropathy (DN) has become one of the leading causes of the end-stage renal disease (ESRD). Tang-Shen-Ning (TSN) decoction, an effective Traditional Chinese formula for DN, can improve the renal function and inhibit renal fibrosis in DN. However, its potential mechanism is still unexplored. METHODS: A network pharmacology approach was employed in this study, including screening for differential expressed genes of DN (DN-DEGs), protein-protein interaction (PPI) network analysis, and GO and KEGG enrichment analysis. Besides, a rat model was established to verify the potential effect of TSN in DN. RESULTS: Twenty-three TSN-related DN-DEGs targets were identified. These genes were associated with decreased glomerular filtration rate (GFR) DN. The enrichment analysis suggested that the inhibition of renal fibrosis and inflammation through growth factors and chemokines is the potential mechanism through which TSN improves DN. TSN reduced renal fibrosis and improved pathological damage in the kidney in vivo through the regulation of GJA1, CTGF, MMP7, and CCL5, which are genes associated with ECM deposition. CONCLUSION: This study revealed that TSN improves DN through a multicomponent, multitarget, and multipathway synergy. We provide a scientific basis for potential targets for TSN use to treat DN, yet further experimental validation is needed to investigate these targets and mechanisms.
RESUMO
Glomerular mesangial cells (GMCs) activation is implicated in the pathogenesis of diabetic nephropathy (DN). Our previous study revealed that high glucose (HG)-treated glomerular endothelial cells (GECs) produce an increased number of TGF-[Formula: see text]1-containing exosomes to activate GMCs through the TGF-[Formula: see text]1/Smad3 signaling pathway. We also identified that Tongxinluo (TXL), a traditional Chinese medicine, has beneficial effects on the treatment of DN in DN patients and type 2 diabetic mice. However, it remained elusive whether TXL could ameliorate renal structure and function through suppression of intercellular transfer of TGF-[Formula: see text]1-containing exosomes from GECs to GMCs. In this study, we demonstrate that TXL can inhibit the secretion of TGF-[Formula: see text]1-containing exosomes from HG-treated GECs. Furthermore, exosomes produced by HG induced-GECs treated with TXL cannot trigger GMC activation, proliferation and extracellular matrix (ECM) overproduction both in vitro and in vivo. These results suggest that TXL can prevent the transfer of TGF-[Formula: see text]1 from GECs to GMCs via exosomes, which may be one of the mechanisms of TXL in the treatment of DN.
Assuntos
Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais/metabolismo , Exoma/genética , Glomérulos Renais/citologia , Rim/patologia , Células Mesangiais/metabolismo , Fitoterapia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genéticaRESUMO
Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN patients in our clinical practice. However, the effect of TXL on podocyte apoptosis and P38 pathway remains unclear. To explore the effect of TXL on podocyte apoptosis and its molecular mechanism in DN, our in vivo and in vitro studies were performed. TXL attenuated oxidative stress in podocyte in DN in our in vivo and in vitro studies. Moreover, TXL inhibited the activation of P38 and caspase-3. Bcl-2 and Bax expression was partially restored by TXL treatment in our in vivo and in vitro studies. More importantly, TXL decreased podocyte apoptosis in diabetic rats and high glucose cultured podocyte. In conclusion, TXL protects podocyte from apoptosis in DN, partially through its antioxidant effect and inhibiting of the activation of P38 and caspase-3.
RESUMO
Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by interstitial and glomeruli fibrosis. Epithelial-to-mesenchymal transition (EMT) plays an important role in the pathogenesis of DN. Tong xinluo (TXL), a Chinese herbal compound, has been used in China with established therapeutic efficacy in patients with DN. To investigate the molecular mechanism of TXL improving DN, KK-Ay mice were selected as models for the evaluation of pathogenesis and treatment in DN. In vitro, TGF- ß 1 was used to induce EMT. Western blot (WB), immunofluorescence staining, and real-time polymerase chain reaction (RT-PCR) were applied to detect the changes of EMT markers in vivo and in vitro, respectively. Results showed the expressions of TGF- ß 1 and its downstream proteins smad3/p-smad3 were greatly reduced in TXL group; meantime, TXL restored the expression of smad7. As a result, the expressions of collagen IV (Col IV) and fibronectin (FN) were significantly decreased in TXL group. In vivo, 24 h-UAER (24-hour urine albumin excretion ratio) and BUN (blood urea nitrogen) were decreased and Ccr (creatinine clearance ratio) was increased in TXL group compared with DN group. In summary, the present study demonstrates that TXL successfully inhibits TGF- ß 1-induced epithelial-to-mesenchymal transition in DN, which may account for the therapeutic efficacy in TXL-mediated renoprotection.
RESUMO
Diabetic nephropathy (DN) is one of the most important diabetic microangiopathies. The epithelial-to-mesenchymal transition (EMT) plays an important role in DN. The physiological role of microRNA-21 (miR-21) was closely linked to EMT. However, it remained elusive whether tongxinluo (TXL) ameliorated renal structure and function by regulating miR-21-induced EMT in DN. This study aimed to determine the effect of TXL on miR-21-induced renal tubular EMT and to explore the relationship between miR-21 and TGF-ß1/smads signals. Real-time RT-PCR, cell transfection, in situ hybridization (ISH), and laser confocal microscopy were used, respectively. Here, we revealed that TXL dose dependently lowered miR-21 expression in tissue, serum, and cells. Overexpression of miR-21 can enhance α-smooth muscle actin (SMA) expression and decrease E-cadherin expression by upregulating smad3/p-smad3 expression and downregulating smad7 expression. Interestingly, TXL also increased E-cadherin expression and decreased α-SMA expression by regulating miR-21 expression. More importantly, TXL decreased collagen IV, fibronectin, glomerular basement membrane, glomerular area, and the albumin/creatinine ratio, whereas it increased the creatinine clearance ratio. The results demonstrated that TXL ameliorated renal structure and function by regulating miR-21-induced EMT, which was one of the mechanisms to protect against DN, and that miR-21 may be one of the therapeutic targets for TXL in DN.
Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/metabolismo , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , HumanosRESUMO
Diabetic peripheral neuropathy (DPN) is a common microvascular complication of diabetes associated with high disability rate and low quality of life. Tang-Luo-Ning (TLN) is an effective traditional Chinese medicine for the treatment of DPN. To illustrate the underlying neural protection mechanisms of TLN, the effect of TLN on electrophysiology and sciatic nerve morphology was investigated in a model of streptozotocin-induced DPN, as well as the underlying mechanism. Sciatic motor nerve conduction velocity and digital sensory nerve conduction velocity were reduced in DPN and were significantly improved by TLN or α -lipoic acid at 10 and 20 weeks after streptozotocin injection. It was demonstrated that TLN intervention for 20 weeks significantly alleviated pathological injury as well as increased the phosphorylation of ErbB2, Erk, Bad (Ser112), and the mRNA expression of neuregulin 1 (Nrg1), GRB2-associated binding protein 1 (Gab1), and mammalian target of rapamycin (Mtor) in injured sciatic nerve. These novel therapeutic properties of TLN to promote Schwann cell survival may offer a promising alternative medicine for the patients to delay the progression of DPN. The underlying mechanism may be that TLN exerts neural protection effect after sciatic nerve injury through Nrg1/ErbB2âErk/Bad Schwann cell survival signaling pathway.