Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Anal ; 14(4): 100910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655398

RESUMO

Eclipta prostrata L. has been used in traditional medicine and known for its liver-protective properties for centuries. Wedelolactone (WEL) and demethylwedelolactone (DWEL) are the major coumarins found in E. prostrata L. However, the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease (NAFLD) still remains to be explored. Utilizing a well-established zebrafish model of thioacetamide (TAA)-induced liver injury, the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis. Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver. The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped, and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized. Based on spatial metabolomics and transcriptomics, we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL. Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD, and presents a "multi-omics" platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.

2.
Chemosphere ; 341: 140001, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659510

RESUMO

The use of rapeseed (Brassica napus) as a hyperaccumulator plant has shown great promise for the remediation of cadmium (Cd) contaminated soils. Nanosized materials (NPs) have been shown to mitigate heavy metal toxicity in plants, but it is unknown how l-aspartate nano-calcium (NPs-Ca) affects Cd uptake, transport, and tolerance in rapeseed. A soil pot experiment was conducted with two treatments: a control treatment (CK) with 2.16 g CaCl2 and NPs-Ca treatment with 6.00 g NPs-Ca, to evaluate the effects and mechanisms of NPs-Ca on Cd tolerance in rapeseed. Compared to CaCl2, NPs-Ca promoted Cd transportation from roots to shoots by up-regulating the expression of Cd transport genes (ABCC12, HMA8, NRAM6, ZIP6, CAX4, PCR2, and HIP6). Therefore, NPs-Ca increased Cd accumulation in rapeseed shoots by 39.4%. Interestingly, NPs-Ca also enhanced Cd tolerance in the shoots, resulting in lower hydrogen peroxide (H2O2) accumulation and proline content, as well as higher antioxidant enzyme activities (POD, CAT). Moreover, NPs-Ca reduced the activity of pectin-degrading enzymes (polygalacturonase: PG, ß-galactosidase: ß-GAL), promoted the activity of pectin methyl esterase (PME), and changed transcription levels of related genes (PME, PMEI, PG, PGIP, and ß-GAL). NPs-Ca treatment also significantly increased the Cd content in cell walls by 59.8%, that is, more Cd was immobilized in cell walls, and less Cd entered organelles in shoots of NPs-Ca treatment due to increased pectin content and degree of pectin demethylation. Overall, NPs-Ca increased Cd accumulation in rapeseed shoots by promoting Cd transport from roots to shoots. And meantime, NPs-Ca enhanced Cd tolerance of shoots by inhibiting pectin degradation, promoting pectin demethylation and increasing Cd fixation in pectin. These findings suggest that NPs-Ca can improve the potential of rapeseed as a hyperaccumulator for the remediation of Cd-contaminated soil and the protection of the environment. Furthermore, the study provides a theoretical basis for the application of NPs-Ca in the phytoremediation of Cd-contaminated soils with hyperaccumulating plants.


Assuntos
Brassica napus , Brassica rapa , Poluentes do Solo , Brassica napus/genética , Brassica napus/metabolismo , Cádmio/análise , Pectinas/farmacologia , Pectinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloreto de Cálcio , Antioxidantes/metabolismo , Brassica rapa/metabolismo , Plantas/metabolismo , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Biodegradação Ambiental
3.
ACS Omega ; 7(17): 14630-14642, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557671

RESUMO

Edible lotus (Nelumbo nucifera G.) is widely consumed in Asian countries and treated as a functional food and traditional medicinal herb due to its abundant bioactive compounds. Lotus rhizome peels, rhizome knots, and seed embryos are important byproducts and processing waste of edible lotus (Nelumbo nucifera G.) with commercial significance. Nevertheless, the comprehensive phenolic profiling of different parts of lotus is still scarce. Thus, this study aimed to review the phenolic contents and antioxidant potential in lotus seeds (embryo and cotyledon) and rhizomes (peel, knot, and pulp) grown in Australia. In the phenolic content and antioxidant potential estimation assays by comparing to the corresponding reference standards, the lotus seed embryo exhibited the highest total phenolic content (10.77 ± 0.66 mg GAE/gf.w.), total flavonoid content (1.61 ± 0.03 mg QE/gf.w.), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (9.66 ± 0.10 mg AAE/gf.w.), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging activity (14.35 ± 0.20 mg AAE/gf.w.), and total antioxidant capacity (6.46 ± 0.30 mg AAE/g), while the highest value of ferric ion reducing antioxidant power (FRAP) activity and total tannin content was present in the lotus rhizome knot (2.30 ± 0.13 mg AAE/gf.w.). A total of 86 phenolic compounds were identified in five parts of lotus by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), including phenolic acids (20), flavonoids (51), lignans (3), stilbenes (2), and other polyphenols (10). The most phenolic compounds, reaching up to 68%, were present in the lotus seed embryo (59). Furthermore, the lotus rhizome peel and lotus seed embryo exhibit significantly higher contents of selected polyphenols than other lotus parts according to high-performance liquid chromatography (HPLC) quantification analysis. The results highlighted that byproducts and processing waste of edible lotus are rich sources of phenolic compounds, which may be good candidates for further exploitation and utilization in food, animal feeding, and pharmaceutical industries.

4.
Sci Total Environ ; 747: 141101, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771779

RESUMO

Human-induced disturbances such as dam construction and regulation often change the duration and frequency of flooding and thus notably influence plant dominance in riparian zones. Even though numerous studies have indicated that the oxidative stress and antioxidative stress systems are essential for plant defenses against adverse flooding stress, the mechanism of vegetation distribution due to hydrological regimes is still unclear. In the current study, the riparian zone of the Three Gorges Reservoir (TGR), which experiences seasonal and anti-seasonal water-level fluctuations, was used to investigate the dominant species. To our knowledge, this is the first study that links molecular-physiological-morphological mechanisms to explore the development of flooding tolerance of dominant riparian species. Physiological traits (e.g., chlorophyll and protein contents), morphological traits (e.g., leaf length), and molecular traits (e.g., enzymatic antioxidant activity and the malondialdehyde content) were analyzed at different water-level gradient zones of the dominant species to evaluate the influence of flooding. To explore the regulation mechanisms of submergence for the vegetation distribution, correlation analysis, PCA (principal component analysis) and laboratory flooding experiments were conducted. The results showed that Cynodon dactylon, which has a rapid antioxidative system, was the dominant species in the riparian zone of the TGR. The leaf length varied significantly along with water level gradients (p < 0.05) with the minimum values appearing in the lowest part of the riparian zone and the maximum values observed in the highest areas. The chlorophyll and protein contents fluctuated in different water level gradient zones, but significant differences were not observed. Within the antioxidative system, catalase was found to be essential for riparian plants in their response to flooding. The current study could provide insight to explore the specific mechanism of resistance for dominant plants to periodic flooding, and the reason why dominant species can survive adverse stress.


Assuntos
Inundações , Plantas , China , Cynodon , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA