Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 113(3): 576-594, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534122

RESUMO

Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-ß-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.


Assuntos
Camellia sinensis , Taninos , Taninos/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Chá/genética , Chá/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
2.
J Agric Food Chem ; 70(43): 14096-14108, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36256444

RESUMO

Polyphenol-rich tea plants are aluminum (Al) accumulators. Whether an association exists between polyphenols and Al accumulation in tea plants remains unclear. This study revealed that the accumulation of the total Al and bound Al contents were both higher in tea samples with high flavonol content than in low, and Al accumulation in tea plants was significantly and positively correlated with their flavonol content. Furthermore, the capability of flavonols combined with Al was higher than that of epigallocatechin gallate (EGCG) and root proanthocyanidins (PAs) under identical conditions. Flavonol-Al complexes signals (94 ppm) were detected in the tender roots and old leaves of tea plants through solid-state 27Al nuclear magnetic resonance (NMR) imaging, and the strength of the signals in the high flavonol content tea samples was considerably stronger than that in the low flavonol content tea samples. This study provides a new perspective for studying Al accumulation in different tea varieties.


Assuntos
Alumínio , Camellia sinensis , Alumínio/metabolismo , Camellia sinensis/química , Folhas de Planta/química , Chá/metabolismo , Flavonóis/metabolismo
3.
J Agric Food Chem ; 70(7): 2354-2365, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133826

RESUMO

Flavonoid glycosides are typical bitter and astringent tasting compounds that contribute to the taste of tea beverages. However, the genes that contribute to the biosynthesis of bitter compounds (e.g., flavanone 7-O-neohesperidoside) in tea plants have yet to be identified. In this study, we identified 194 UDP-glycosyltransferases (UGTs) from the tea transcriptome database. Among them, two genes, CsUGT75L12 and CsUGT79B28, encoding flavonoid 7-O-glycosyltransferase and 7-O-glucoside(1→2)rhamnosyltransferase, respectively, were identified from Camellia sinensis. In vitro, the purified recombinant enzyme rCsUGT75L12 specifically transports the glucose unit from UDP-glucose to the 7-OH position of the flavonoid to produce the respective 7-O-glucoside. rCsUGT79B28 regiospecifically transfers a rhamnose unit from UDP-rhamnose to the 2″-OH position of flavonoid 7-O-glucosides to produce flavonoid 7-O-di-glycosides. Additionally, the expression profiles of the two CsUGTs were correlated with the accumulation patterns of 7-O-glucoside and 7-O-neohesperidoside, respectively, in tea plants. These results indicated that the two CsUGTs are involved in the biosynthesis of bitter flavonoid 7-O-neohesperidoside through the sequential glucosylation and rhamnosylation of flavonoids in C. sinensis. Taken together, our findings provided not only molecular insights into flavonoid di-glycoside metabolism in tea plants but also crucial molecular markers for controlling the bitterness and astringent taste of tea.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Paladar , Chá/metabolismo , Difosfato de Uridina/metabolismo
4.
J Agric Food Chem ; 69(35): 10069-10081, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410120

RESUMO

Many studies have shown that phenolic compounds such as lignin and flavonoids enhance plant resistance. Tea plants are rich in flavonoid compounds. Whether these compounds are related to tea plant resistance is unclear. In this study, an interesting conclusion was drawn on the basis of experimental results: in response to abiotic stress (except for sucrose treatment), gene expression was increased in the phenylpropanoid and lignin pathways and was reduced in the flavonoid pathway in tea plants. CsHCTs, the genes located at the branch point of the lignin and flavonoid pathways, are most suitable for regulating the ratio of carbon flow in the lignin pathway and flavonoid synthesis. Enzymatic and genetic modification experiments proved that CsHCTs encode hydroxycinnamoyl-coenzyme A:shikimate/quinate hydroxycinnamoyl transferase in vitro and in vivo. Furthermore, the genetic modification results showed that the contents of phenolic acids and lignin were increased in tobacco and Arabidopsis plants overexpressing CsHCTs, whereas the content of flavonol glycosides was decreased. Both types of transgenic plants showed resistance to many abiotic stresses and bacterial infections. We speculate that CsHCTs participate in regulation of the metabolic flow of carbon from the flavonoid pathway to the chlorogenic acid, caffeoylshikimic acid, and lignin pathways to increase resistance to biotic and abiotic stresses.


Assuntos
Arabidopsis , Camellia sinensis , Arabidopsis/genética , Arabidopsis/metabolismo , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Chá
5.
J Agric Food Chem ; 68(30): 7861-7869, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32680420

RESUMO

Aluminum (Al) influences crop yield in acidic soil. The tea plant (Camellia sinensis) has high Al tolerance with abundant monomeric catechins in its leaves, especially epigallocatechin gallate (EGCG), and polymeric proanthocyanidins in its roots (rPA). The role of these polyphenols in the Al resistance of tea plants is unclear. In this study, we observed that these polyphenols could form complexes with Al in vitro, and complexation capacity was positively influenced by high solution pH (pH 5.8), polyphenol type (rPA and EGCG), and high Al concentration. In the 27Al nuclear magnetic resonance (NMR) experiment, rPA-Al and EGCG-Al complex signals could be detected both in vitro and in vivo. The rPA-Al and EGCG-Al complexes were detected in roots and old leaves, respectively, of both greenhouse seedlings and tea garden plants. Furthermore, in seedlings, Al accumulated in roots and old leaves and mostly existed in the apoplast in binding form. These results indicate that the formation of complexes with tea polyphenols in vivo plays a vital role in Al resistance in the tea plant.


Assuntos
Alumínio/metabolismo , Camellia sinensis/metabolismo , Proantocianidinas/metabolismo , Alumínio/toxicidade , Camellia sinensis/química , Camellia sinensis/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proantocianidinas/química , Plântula/química , Plântula/efeitos dos fármacos , Plântula/metabolismo
6.
Food Res Int ; 135: 109276, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527476

RESUMO

Wild tea plants, which are classified into different species in the section Thea of the genus Camellia, are widely distributed in southern China. Tea produced from these plants has a unique flavor, which is different from that of tea produced from tea cultivars. In this study, we performed a comparative analysis of morphology, phylogenetic relationships, and phenolic compound metabolism between two wild tea plants (Gujing and Siqiu) and a tea cultivar (Shuchazao). Siqiu and Gujing tea plants had similar morphological traits and could be phylogenetically classified into a same cluster, which was entirely separate from the cluster containing widely cultivated cultivars such as Camellia sinensis cv. Shuchazao. Combined metabolomic and transcriptome analyses revealed that UGT84a22 was highly expressed in Gujing leaves compared with Shuchazao and Siqiu leaves, which may lead to the high accumulation of galloylquinic acid in Gujing leaves. A 14-bp deletion spanning the -765-(-7 5 1) range in the F3'5'H promoter potentially led to low F3'5'H expression levels in Siqiu and Gujing tea plants, which severely disrupted the accumulation of trihydroxy flavonoids in Gujing and Siqiu tea leaves. The high astringency intensity in Gujing tea could be due to the high accumulation of proanthocyanidins and galloylquinic acid. The results of the present study may improve our understanding of the metabolic characteristics of each evolutionary group of species or varieties in the section Thea of the genus Camellia.


Assuntos
Camellia sinensis , Camellia , China , Filogenia , Chá
7.
Food Chem ; 305: 125507, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622805

RESUMO

The contributions of many polyphenols other than catechins and flavonols to the astringency of tea are often neglected. Here, the contributions of polyphenols were assessed through targeted metabolic profiling using liquid chromatography-mass spectrometry. A total of 86 polyphenols were identified from 47 green tea samples with varying astringency scores, of which 76 compounds were relatively quantified. A correlation matrix analysis revealed that monohydroxyflavonol and acyl derivatives of polyphenols, except for galloylated catechins, had negative correlations with the other polyphenols. Principal component analysis revealed a distinct separation of monohydroxyflavonol and acyl derivatives of polyphenols from the other polyphenols. The results suggest metabolic differences in terms of hydroxylation, glycosylation, acylation, and condensation reactions of polyphenols between the different tea samples, particularly between the samples obtained in spring and autumn. The correlation analysis showed that metabolic fluxes toward the aforementioned four reactions of polyphenols played unique roles in the astringency of tea infusions.


Assuntos
Espectrometria de Massas , Metabolômica/métodos , Polifenóis/metabolismo , Paladar , Chá/metabolismo
8.
Planta ; 250(4): 1163-1175, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31177387

RESUMO

MAIN CONCLUSION: Biochemical, transgenic, and genetic complementation data demonstrate that three glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanins in plant cells. Flavonoids are compounds in tea (Camellia sinensis) that confer the characteristic astringent taste of tea beverages; these compounds have numerous benefits for human health. In plant cells, flavonoids are synthesized in different locations within the cytoplasm and are then transported and finally stored in vacuoles. To date, the mechanism involved in the intracellular transport of flavonoids in tea has not been well elucidated. In this study, we report the functional characterization of three cDNAs encoding glutathione S-transferases (CsGSTs) of C. sinensis, namely, CsGSTa, CsGSTb, and CsGSTc. The expression profiles of CsGSTa and CsGSTb were positively correlated with the accumulation of flavonols, anthocyanins and proanthocyanins in tea tissues and cultivars. These three recombinant CsGSTs showed a high affinity for flavonols (kaempferol-3-O-glucoside and quercetin-3-O-glucoside) and anthocyanin (cyanidin-3-O-glucoside) in vitro but had no or weak affinity for epicatechin. In vivo, CsGSTa, CsGSTb and CsGSTc fully or partially restored the storage of anthocyanins and proanthocyanidins in transgenic tt19 mutants. Metabolic profiling revealed that the contents of anthocyanins, flavonols, and proanthocyanidins were increased in the transgenic petals of Nicotiana tabacum. Taken together, all data showed that CsGSTa, CsGSTb, and CsGSTc are associated with the storage of anthocyanins, flavonols, and proanthocyanins in C. sinensis cells.


Assuntos
Camellia sinensis/enzimologia , Flavonoides/metabolismo , Glutationa Transferase/metabolismo , Proantocianidinas/metabolismo , Antocianinas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Camellia sinensis/genética , Camellia sinensis/fisiologia , Flavonóis/metabolismo , Fluorescência , Expressão Gênica , Glutationa Transferase/genética , Mutação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Vacúolos/metabolismo
9.
J Cell Physiol ; 234(2): 1880-1888, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30067868

RESUMO

Echinacoside (ECH) is a phenylethanoid glycoside extracted from a Chinese herbal medicine, Cistanches salsa. ECH possesses many biological properties, including anti-inflammation, neural protection, liver protection, and antitumor. In the current study, we aimed to explore the effects of ECH on hepatocellular carcinoma (HCC) and the underlying mechanisms. The results showed that ECH could attenuate diethylnitrosamine (DEN)-induced HCC in mice, and exerted antiproliferative and proapoptotic functions on HepG2 HCC cell line. ECH exposure in HepG2 cells dose-dependently reduced the phosphorylation of AKT (p-AKT) and enhanced the expression of p21 (a cell cycle inhibitor) and Bax (a proapoptotic protein). Furthermore, ECH significantly suppressed insulin-like growth factor-1-induced p-AKT and cell proliferation. These data indicated that phosphoinositide 3-kinase (PI3K)/AKT signaling was involved in the anti-HCC activity of ECH. Gene set enrichment analysis results revealed a positive correlation between the PI3K pathway and triggering receptors expressed on myeloid cells 2 (TREM2) expression in HCC tissues. ECH exposure significantly decreased TREM2 protein levels in HepG2 cells and DEN-induced HCC. Furthermore, ECH-mediated proliferation inhibition and AKT signaling inactivation were notably attenuated by TREM2 overexpression. In conclusion, ECH exerted its antitumor activity via decreasing TREM2 expression and PI3K/AKT signaling.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/prevenção & controle , Proliferação de Células/efeitos dos fármacos , Glicosídeos/farmacologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dietilnitrosamina , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais
10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1100-1101: 148-157, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317153

RESUMO

Tea possesses a distinctive flavor profile and can have health benefits owing to the high levels of flavonoids in its leaves. However, the mechanism of the flavonoid glycosylation hasn't been well studied in tea plants, especially glycosylation at the 7-OH site has rarely been reported. In this study, four UGT genes CsUGT73A20, CsUGT75L12, CsUGT78A14 and CsUGT78A15 were isolated from tea leaves and overexpressed in the model plants Arabidopsis thaliana and Nicotiana tabacum for the functional identification of genes in vivo. In order to characterize the CsUGT functions in model plants, flavonoids in seeds of Arabidopsis and the flowers of tobacco were identified first. In CsUGT73A20-overexpressing Arabidopsis and tobacco, the level of certain flavonol glycosides involved in glycosylation reactions at the 3-OH and 7-OH sites increased considerably, but the level of flavan-3-ols decreased. In CsUGT75L12 transgenic Arabidopsis, the level of flavonol glycosides exhibiting glucosyltransferase activity at the 7-OH position increased markedly, but the concentrations of quercetin and kaempferol and flavan-3-ols decreased. In both transgenic Arabidopsis and tobacco, CsUGT78A14 promoted the synthesis of more flavonol glucosides with UDP-glucose as a sugar donor at the 3-OH glycosylation site. In CsUGT78A15 transgenic plants, flavonol galactosides at the 3-OH glycosylation site with UDP-galactose as a sugar donor were increased. In the tea plant, the corresponding flavonoid glycosides such as kaempferol­3­O­ß­d­glucosides, kaempferol­3­O­ß­d­galactosides, kaempferol­7­O­ß­d­glucoside, and luteolin­7­O­ß­d­glucoside were identified. And it could be possible that they were products of CsUGT78A14, CsUGT78A15, CsUGT73A20 and CsUGT75L12, respectively.


Assuntos
Camellia sinensis/enzimologia , Flavonoides/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/metabolismo , Arabidopsis/genética , Camellia sinensis/genética , Flavonoides/análise , Flavonoides/química , Glicosilação , Glicosiltransferases/genética , Fenóis/análise , Fenóis/química , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Sementes/metabolismo , Nicotiana/genética
11.
J Agric Food Chem ; 65(50): 10993-11001, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29161813

RESUMO

Polyphenols are one of the largest groups of compounds that confer benefits to the health of plants and humans. Flavonol glycosides are a major ingredient of polyphenols in Camellia sinensis. Flavonol-3-O-glycosides are characteristic astringent taste compounds in tea infusion. A polyphenolic glycosyltransferase (CsUGT72AM1) belonging to cluster IIIb was isolated from the tea plant. The full-length cDNA of CsUGT72AM1 is 1416 bp. It encodes 472 amino acids with a calculated molecular mass of 50.92 kDa and an isoelectric point of 5.21. The recombinant CsUGT72AM1 protein was expressed in Escherichia coli and exhibited catalytic activity toward multiple flavonoids and coniferyl aldehyde. The enzyme assay indicated that rCsUGT72AM1 could perform glycosidation of flavonols or coniferyl aldehyde in vitro to form 3-O-glucoside or 4-O-glucoside, respectively. Interestingly, this enzyme also had activities and performed multisite glycosidation toward flavanones. The consistent products were confirmed to be naringenin-7-O-glucoside and -4'-O-glucoside by the nuclear magnetism assay. In addition, in the enzyme assay with cyanidin as the substrate, the results suggested that the glycosylated activity of CsUGT72AM1 was remarkably inhibited by a high concentration of anthocyanins. The above results indicate that CsUGT72AM1 may be involved in the metabolism of flavonol, flavanone, anthocyanin, and lignin.


Assuntos
Camellia sinensis/enzimologia , Glucosídeos/biossíntese , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Polifenóis/biossíntese , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/química , Glicosiltransferases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidade por Substrato , Difosfato de Uridina/metabolismo
12.
Sci Rep ; 7(1): 5926, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725058

RESUMO

Flavonol glycosides, which are often converted from aglycones in a process catalyzed by UDP-glycosyltransferases (UGTs), play an important role for the health of plants and animals. In the present study, a gene encoding a flavonoid 7-O-glycosyltransferase (CsUGT75L12) was identified in tea plants. Recombinant CsUGT75L12 protein displayed glycosyltransferase activity on the 7-OH position of multiple phenolic compounds. In relative comparison to wild-type seeds, the levels of flavonol-glucosides increased in Arabidopsis seeds overexpressing CsUGT75L12. In order to determine the key amino acid residues responsible for the catalytic activity of the protein, a series of site-directed mutagenesis and enzymatic assays were performed based on the 3D structural modeling and docking analyses. These results suggested that residue Q54 is a double binding site that functions as both a sugar receptor and donor. Residues H56 and T151, corresponding to the basic active residues H20 and D119 of VvGT1, were not irreplaceable for CsUGT75L12. In addition, residues Y182, S223, P238, T239, and F240 were demonstrated to be responsible for a 'reversed' sugar receptor binding model. The results of single and triple substitutions confirmed that the function of residues P238, T239, and F240 may substitute or compensate with each other for the flavonoid 7-O-glycosyltransferase activity.


Assuntos
Camellia sinensis/enzimologia , Flavonoides/metabolismo , Glicosiltransferases/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Sítios de Ligação , Escherichia coli/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/isolamento & purificação , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Mutação/genética , Filogenia , Proteínas Recombinantes/metabolismo
13.
J Agric Food Chem ; 65(10): 2074-2083, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28220704

RESUMO

Tea (Camellia sinensis) is an important commercial crop, in which the high content of flavonoids provides health benefits. A flavonoid glycosyltransferase (CsUGT73A20), belonging to cluster IIIa, was isolated from tea plant. The recombinant CsUGT73A20 in Escherichia coli exhibited a broad substrate tolerance toward multiple flavonoids. Among them, kaempferol was the optimal substrate compared to quercetin, myricetin, naringenin, apigenin, and kaempferide. However, no product was detected when UDP-galactose was used as the sugar donor. The reaction assay indicated that rCsUGT73A20 performed multisite glycosidation toward flavonol compounds, mainly forming 3-O-glucoside and 7-O-glucoside in vitro. The biochemical characterization analysis of CsUGT73A20 showed more K7G product accumulated at pH 8.0, but K3G was the main product at pH 9.0. Kinetic analysis demonstrated that high pH repressed the glycosylation reaction at the 7-OH site in vitro. Besides, the content of five flavonol-glucosides was increased in CsUGT73A20-overexpressing tobaccos (Nicotiana tabacum).


Assuntos
Camellia sinensis/enzimologia , Flavonoides/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Estabilidade Enzimática , Flavanonas/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Quempferóis/metabolismo , Cinética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA