Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 7(12): 5717-5726, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34757733

RESUMO

With the development of technology, adjuvant immunotherapy has become a promising strategy for prevention of postoperative tumor regression and metastasis by stimulating the host immune response. However, the therapeutic effects are still unsatisfactory due to the lack of synergy between different methods. In this study, an efficient synergistic immunotherapy system based on injectable sodium alginate hydrogels was designed to inhibit in situ recurrence and metastasis at the same time. On the one hand, an injectable sodium alginate (SA) hydrogel microsystem loaded with toll-like receptor (TLR) agonists (CpG ODNs) was synthesized for inhibiting in situ recurrence, and then carcinoembryonic antigen (CEA) probe was also added to detect CEA based on fluorescence resonance energy transfer (FRET) technology to monitor the occurrence and development of tumor recurrence. On the other hand, an anti-programmed cell death 1 ligand 1 antibody (anti-PD-L1)-modified SA nanogel loaded with indocyanine green (ICG@SA-anti-PD-L1 nanogel) was prepared for diagnosing and inhibiting lung metastasis by assisting orthotopic tumor therapy. In vitro and in vivo results demonstrated that this SA micro/nanosystem could monitor and inhibit postoperative recurrence and metastasis. We hope that this micro/nano-synergistic system will become an effective strategy for postoperative adjuvant immunotherapy.


Assuntos
Hidrogéis , Neoplasias , Alginatos , Humanos , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA