Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Rep ; 14(1): 4689, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409460

RESUMO

Antimicrobial resistance is a worldwide health problem that demands alternative antibacterial strategies. Modified nano-composites can be an effective strategy as compared to traditional medicine. The current study was designed to develop a biocompatible nano-drug delivery system with increased efficacy of current therapeutics for biomedical applications. Zinc oxide nanoparticles (ZnO-NPs) were synthesized by chemical and green methods by mediating with Moringa olifera root extract. The ZnO-NPs were further modified by drug conjugation and coating with PEG (CIP-PEG-ZnO-NPs) to enhance their therapeutic potential. PEGylated ZnO-ciprofloxacin nano-conjugates were characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry, and Scanning Electron Microscopy. During antibacterial screenings chemically and green synthesized CIP-PEG-ZnO-NPs revealed significant activity against clinically isolated Gram-positive and Gram-negative bacterial strains. The sustainable and prolonged release of antibiotics was noted from the CIP-PEG conjugated ZnO-NPs. The synthesized nanoparticles were found compatible with RBCs and Baby hamster kidney cell lines (BHK21) during hemolytic and MTT assays respectively. Based on initial findings a broad-spectrum nano-material was developed and tested for biomedical applications that eradicated Staphylococcus aureus from the infectious site and showed wound-healing effects during in vivo applications. ZnO-based nano-drug carrier can offer targeted drug delivery, and improved drug stability and efficacy resulting in better drug penetration.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Ciprofloxacina/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Microscopia Eletrônica de Varredura , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
2.
Heliyon ; 9(11): e21161, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954293

RESUMO

Neurodegenerative disorders, caused by progressive neuron loss, are a global health issue. Among the various factors implicated in their pathogenesis, dysregulation of acetylcholinesterase activity has been recognized as a key contributor. Acetylcholinesterase breaks down the neurotransmitter acetylcholine, important for neural transmission. Evaluating phyto-compounds from Bacopa monnieri Linn. through in vitro and in silico analysis may expand their role as alternative therapeutic agents by modulating the function of acetylcholinesterase and complementing existing treatments. To accomplish this objective, chemical structures of phyto-compounds were retrieved from PubChem database and subjected to in silico and in vitro approaches. Virtual screening was performed through molecular docking and molecular dynamic simulation resulting in four top hit compounds including quercetin, apigenin, wogonin, and bacopaside X (novel lead compound for acetylcholinesterase inhibitor) with least binding score. Further, dose dependent acetylcholinesterase inhibition biochemical assay depicted that bacopaside X, apigenin, quercetin, and wogonin exhibited strong potential against acetylcholinesterase with IC50 values of 12.78 µM, 13.83 µM, 12.73 µM and 15.48 µM respectively, in comparison with the donepezil (IC50: 0.0204 µM). The in silico and in vitro research suggests that B. monnieri phyto-compounds have the potential to modulate molecular targets associated with neurodegenerative diseases and have a role in neuroprotection.

3.
Bol. latinoam. Caribe plantas med. aromát ; 22(5): 560-580, sep. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1560799

RESUMO

Oxidative stress is a key cause of gastrointestinal disorders, primarily stomach ulcers. Multiple intrinsic and extrinsic mechanisms caused the body to produce reactive oxygen species (ROS). The body's antioxidant defense system protects against these reactive species. When the degree of ROS production exceeds the normal range, the body's natural defense system fails to neutralize these dangerous free radicals, necessitating need for an exogenous source of natural antioxidants. Natural herbal remedies have been widely employed as antioxidants to relieve oxidative stress in gastric ulcers. Polyphenols, tannins, essential oils, flavonoids, notably quercetin, carotenoids, vitamin C, vitamin A, and minerals are among the molecules of immense interest in bioassays due to their significant antioxidant effects. In the present review, several natural anti-ulcer medicinal plants along with their antioxidative mechanism have been reported. Electronic databases including PubMed, Google Scholar and Scopus were explored to identify the antioxidant and gastroprotective potential of all the plants.


El estrés oxidativo es una causa clave de trastornos gastrointestinales, principalmente úlceras estomacales. Múltiples mecanismos intrínsecos y extrínsecos hacen que el cuerpo produzca especies reactivas de oxígeno (ROS). El sistema de defensa antioxidante del cuerpo protege contra estas especies reactivas. Cuando el grado de producción de ROS excede el rango normal, el sistema de defensa natural del cuerpo no logra neutralizar estos peligrosos radicales libres, lo que requiere de una fuente exógena de antioxidantes naturales. Los remedios herbales naturales se han empleado ampliamente como antioxidantes para aliviar el estrés oxidativo en las úlceras gástricas. Los polifenoles, los taninos, los aceites esenciales, los flavonoides, en particular la quercetina, los carotenoides, la vitamina C, la vitamina A y los minerales se encuentran entre las moléculas de mayor interés en los bioensayos debido a sus importantes efectos antioxidantes. En la presente revisión se han reportado varias plantas medicinales naturales antiulcerosas junto con su mecanismo antioxidante. Se exploraron bases de datos electrónicas como PubMed, Google Scholar y Scopus para identificar el potencial antioxidante y gastroprotector de todas las plantas.


Assuntos
Plantas Medicinais , Úlcera Gástrica/tratamento farmacológico , Antioxidantes/farmacologia , Bases de Dados Bibliográficas , Gastroenteropatias/tratamento farmacológico , Medicina Tradicional
5.
Methods Mol Biol ; 2638: 415-435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781660

RESUMO

Potato variety development entails a number of breeding steps, as well as testing and, finally, commercialization. Historically, phenotypic assesment were carried out to select and germplasm development. The US Department of Agriculture (USDA) funded the Solanaceae Coordinated Agricultural Project (SolCAP) to decode genomic resources into tools that breeders and geneticists can use. This project resulted in the creation of a genome-wide single-nucleotide polymorphism (SNP) array that can be used to evaluate elite potato-breeding germplasm. This array was used to genotype a diverse panel of Solanum species, as well as numerous biparental, diploid, and tetraploid populations. It has high marker density to generate genetic maps that can be used to identify numerous quantitative trait loci (QTLs) for agronomic, quality, biotic, and abiotic resistance traits. Up to now, numerous QTLs for important traits have been identified using new diploid and tetraploid genetic maps. SNP markers were used to assess germplasm relationships and fingerprint varieties and identify candidate genes. The Infinium 8303 SolCAP Potato array offers a common set of SNP markers that can be used for mapping, germplasm assessment, and fingerprinting with confidence. This array has also been helpful in furthering our understanding of the potato genome. Furthermore, some other Infinium potato arrays (i.e., 12 K, 20 K, and 25 K) have been genotyped, and breeders can map quantitative trait loci (QTLs) across multiple populations to improve our understanding of economically important traits and lead to marker-assisted selection (MAS) and breeding and, ultimately, improved varieties.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Genótipo , Tetraploidia , Melhoramento Vegetal , Locos de Características Quantitativas , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Cureus ; 14(3): e23458, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35495017

RESUMO

Background Anatomical abnormalities leading to bowel movement failure are the major cause of intestinal obstruction. This study was done to assess the diagnostic efficacy of contrast enema in neonates with lower intestinal obstruction. Methodology This prospective study was conducted in The Children's Hospital and University of Child Health Sciences, Lahore from February 2021 to July 2021. Patients presenting with constipation, abdominal distension, vomiting, and unable to pass meconium, evaluated clinically and by X-rays, were included in the study. Patients with lower intestinal obstruction (i.e., meconium ileus, Hirschsprung's disease, ileal atresia, meconium plug syndrome, and small left colon) were given contrast enema (gastrografin) after hydration. The radiologist was blinded by the clinical diagnosis or reference standard diagnosis, which was labeled prior to image interpretation. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for major contrast enema diagnosis. Results During this period, a total of 34 patients were included in the study. The mean age of presentation was 72.0 ± 24 hours. There were 21 (61.8%) boys and 13 (38.2%) girls, representing a male to female ratio of 1.7:1. In four cases, our diagnosis on the basis of contrast enema was proven wrong. Sensitivity, specificity, PPV, and NPV of Hirschsprung's disease were found to be 93.3%, 50%, 87.5%, and 66.7%, while these were 84.6%, 66.7%, 91.7%, and 50.0%, respectively, for meconium ileus. Conclusion The diagnostic efficacy of contrast enema was found to be good in neonates with lower intestinal obstruction. The spectrum of intestinal obstruction among neonates shows diversity while contrast enema seems to play a major role in the identification and remodeling of the diagnostic plan in a major proportion of cases.

7.
PLoS One ; 17(4): e0265206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482722

RESUMO

Wild medicinal herbs have been used as folk and traditional medicines all across the world since well before recorded history. This present study was designed to test the antimicrobial activities of five different solvent extracted samples (n-hexane, n-butanol, ethyl acetate, methanol, and water) of Peganum harmala using stems and seeds. Two different strains of Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia), two Gram-positive bacteria (Bacillus subtilus and Staphylococcus aureus), and one fungal strain (Candida albicans) were used. The antimicrobial activities were measured using a disc diffusion assay. Two concentrations of the extracts (1 and 2mgDisc-1) were used. Ethyl acetate fraction was found more affective among the tested solvents and showed maximum activity (zone of inhibition) against S. aureus (65.53 and 81.10%), E. coli (46.22 and 61.29%) while n-butanol and water fractions gave maximum activity against S. aureus (78.86 and 70.00%) and K. pneumonia (57.00 and 61.39%) respectively. Water fraction showed maximum activity against C. albicans (60.00 and 81.88%). In the case of the stem, Ethyl acetate again showed more activity against B. subtilus (38.57 and 42.10%) and S. aureus (36.66 and 46.66%) while n-butanol showed maximum activity against K. pneumonia (24.55 and 32.44%) and E. coli (27.93 and 37.61%). Methanol was found more effective against C. albicans (25.71 and 43.80%). Seed extracted samples were found more effective compared to the stem. Ethyl acetate, butanol, and aqueous extracted samples showed good activity against the tested microbes, so these fractions are recommended for study their mechanism of actions and isolation of bioactive metabolites responsible for antimicrobial activities. The P. harmala should be evaluated for their bioactive compounds to be used in future studies. Our objective is to provide the framework for future study on the roles of P. harmala as traditional medicines.


Assuntos
Peganum , 1-Butanol/farmacologia , Antibacterianos/farmacologia , Candida albicans , Escherichia coli , Metanol/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Sementes , Solventes/farmacologia , Staphylococcus aureus , Água/farmacologia
8.
Chemosphere ; 292: 133411, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34958785

RESUMO

The rapidly emerging field of nanotechnology is considered an important achievement in the agriculture sector to increase the pest mortality rate and improve the crop production. The present study evaluates the novel pesticidal and anti-microbial activities of Chrysanthemum coronarium and Azadirachta indica in the nano-suspensions form. The anti-solvent precipitation method was used to formulate nano-suspensions proposed by Response Surface Methodology (RSM). Physicochemical nature of plant extracts and nano-suspensions was characterized through analysis of Zeta-sizer, FT-IR, and HPLC. Characterization results revealed a minimum particle size of 121.1 and 170.1 nm for Chrysanthemum coronarium and Azadirachta indica, respectively. The pesticidal activity of nano-suspension was performed against red flour beetle (RFB) and lesser grain borer (LGB) pests, which showed the maximum mortality rate of 100% with 100% concentration of plant extracts and nano-suspensions of Chrysanthemum coronarium and Azadirachta indica against both insects. In comparison, the combination of these both plant extracts revealed the maximum 100% mortality with a 50% concentration of nano-suspensions (mixing ratio 1:1) after 72 h. The antibacterial activity showed the maximum zone inhibition of 9.96 ± 0.17 and 14.17 ± 0.50 mm against S.aureus and E. coli with nano-suspension of Chrysanthemum coronarium, and 12.09 ± 0.11 and 14.10 ± 0.49 mm with nano-suspension of Azadirachta indica, respectively. It is concluded that individual nano-suspensions showed better pesticidal as well as antimicrobial activities than combinations. However, the constructed nanosuspension can be applied to control the plant pests and diseases simultaneously.


Assuntos
Azadirachta , Chrysanthemum , Escherichia coli , Controle de Pragas , Extratos Vegetais , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Nat Prod Res ; 36(16): 4227-4230, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34498973

RESUMO

The present study demonstrates the pharmacological tendency of Sideroxylon mascatense leaves extracts, fractions and sub-fractions using thin layer chromatography, column chromatography, and phytochemical (phenolics, flavonoids) and biological assays (free radical scavenging, antioxidative, antimicrobial, enzyme inhibition). The results disclosed that fractionation practice accumulated the active phytochemicals in few fractions and finally leads to the isolation of active compounds. The structural elucidation was carried out using spectroscopic 1D (1H, 13C) 2D NMR and spectrometric techniques. The n-hexane fraction led to isolation of lupeol. From the CHCl3 and EtOAc fractions, two compounds were isolated, hentriacontanol, and lupeol, respectively. The isolated compounds were also characterized for biological activities. This study concludes that bioactivity guided isolation can be performed for isolation of active constituents from S. mascatense which can be further explored for drug development.


Assuntos
Anti-Infecciosos , Sapotaceae , Antibacterianos/análise , Antibacterianos/farmacologia , Anti-Infecciosos/química , Antioxidantes/análise , Antioxidantes/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Sapotaceae/química
10.
Artif Cells Nanomed Biotechnol ; 49(1): 626-634, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597252

RESUMO

Nano-elicitation is one among the prioritised strategies considered globally for sustainable and uniform production of industrially important medicinal compounds. Ocimum basilicum (Thai basil), a renowned medicinal species is a reservoir of commercially vital metabolites and proved for its health assuring effects in cancer, diabetes, microbial and cardiovascular diseases. However, its consumption and industrial demand raised intent to divert towards better alternates for ensuring sustainable production of medicinal compounds. Herein, we investigated the comparative potential of metal oxide [copper oxide (CuO) and manganese oxide (MnO)] nanoparticles to elicit the biosynthesis of bioactive metabolites and antioxidative capacity of O.basilicum callus cultures. Results showed that callus grown on MS media supplemented with 10 mg/L CuO-NPs resulted in the highest biomass accumulation (FW: 172.8 g/L, DW: 16.7 g/L), phenolic contents (TPC: 27.5 mg/g DW), and flavonoid contents (TFC: 9.1 mg/g DW) along with antioxidant activities (DPPH: 94%, ABTS: 881 µM TEAC, FRAP: 386 µM TEAC) compared with MnO-NPs and control. Likewise, the Superoxide dismutase (SOD: 1.28 nM/min/mg FW) and Peroxidase (POD: 0.48 nM/min/mg FW) activities were also recorded maximum in CuO-NPs elicited cultures than MnO-NPs and control. Moreover, the HPLC results showed that rosmarinic acid (11.4 mg/g DW), chicoric acid (16.6 mg/g DW), eugenol (0.21 mg/g DW) was found optimum in cultures at 10 mg/L CuO-NPs. Overall, it can be concluded that CuO nanoparticles can be effectively used as a elicitor for biosynthesis of metabolites in callus cultures of O. basilicum (Thai basil). The study is indeed a contribution to the field that will help decoding the mechanism of action of CuO NPs. However, further molecular investigations are needed to fully develop understanding about the metabolic potential of O. bascillicum and scalling up this protocol for bulkup production of bioactive compounds.


Assuntos
Ocimum basilicum
11.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205169

RESUMO

In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer-both in vivo and in vitro clinical trials-has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.


Assuntos
Doenças Autoimunes do Sistema Nervoso/metabolismo , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Citocinas/metabolismo , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Leucócitos/metabolismo , Receptores de Canabinoides/efeitos dos fármacos , Linfócitos T/metabolismo
12.
Animal Model Exp Med ; 4(2): 87-103, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34179717

RESUMO

Cancer is a major stress for public well-being and is the most dreadful disease. The models used in the discovery of cancer treatment are continuously changing and extending toward advanced preclinical studies. Cancer models are either naturally existing or artificially prepared experimental systems that show similar features with human tumors though the heterogeneous nature of the tumor is very familiar. The choice of the most fitting model to best reflect the given tumor system is one of the real difficulties for cancer examination. Therefore, vast studies have been conducted on the cancer models for developing a better understanding of cancer invasion, progression, and early detection. These models give an insight into cancer etiology, molecular basis, host tumor interaction, the role of microenvironment, and tumor heterogeneity in tumor metastasis. These models are also used to predict novel cancer markers, targeted therapies, and are extremely helpful in drug development. In this review, the potential of cancer models to be used as a platform for drug screening and therapeutic discoveries are highlighted. Although none of the cancer models is regarded as ideal because each is associated with essential caveats that restraint its application yet by bridging the gap between preliminary cancer research and translational medicine. However, they promise a brighter future for cancer treatment.


Assuntos
Neoplasias , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Pesquisa Translacional Biomédica , Microambiente Tumoral
13.
Braz. J. Pharm. Sci. (Online) ; 57: e19061, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1350245

RESUMO

Proteins and peptides are the most diverse biomolecules found in nature and make our interest due to their wide applications in food and pharmaceutical industry. Angiotensin Converting Enzyme (ACE) plays a major role in controlling blood pressure. The inhibition of ACE with peptides is a main target in the regulation of hypertension. The objective of the present study was to investigate the therapeutic potential of soy bean. This was accomplished by isolation of ACE inhibitory peptides using response surface methodology (RSM) and characterization of these bioactive peptides by mass spectrometry. 31 hydrolyzed fractions were isolated and evaluated for their ACE inhibition potential. Hydrolyzed fraction having highest ACE inhibitory activity was characterized by liquid chromatography-mass spectrometry (LC-MS) technique. RSM results showed maximum ACE inhibition potential (64%) by hydrolyzate was obtained at 45 ºC temperature, pH 8.0, E/S 0.2 in 2 hours hydrolysis time. Results of LC-MS analysis revealed Ser-Gly, Ser-Pro, Met-Ala, His-Ala, Lys-Pro, Phe-Thr, Met-Leu, Pro-Arg, Ala-Pro-Val, Pro-Ala-Leu, Val-Met-Gly, Pro-Leu-Val, Pro-Pro-Gln, His-Arg-Gly, Ser-Phe-Val-Leu, Ala-Val-His-Try, Arg-Thr-Val-Arg, His-His-Tyr-Leu-Val, Asp-Gly-Ala-Cys-Ser-Ala-Asn and MetVal-Thr-Gly-Pro-Gly-Cys-His bioactive peptides in hydrolyzed fraction of soy bean. Our data provide evidence that response surface methodology is a good approach for isolation of antihypertensive bioactive peptides with more potent activity as nutraceuticals or pharmaceuticals. Therefore soy bean can be use for industrial production of pharmaceutical grade natural medicines for handling high blood pressure.


Assuntos
Peptídeos/farmacologia , Proteínas/farmacologia , Proteínas de Soja/farmacologia , Suplementos Nutricionais , Hidrolisados de Proteína/farmacologia , Espectrometria de Massas , Cromatografia Líquida/métodos , Otimização de Processos/classificação , Concentração de Íons de Hidrogênio , Hipertensão/terapia , Anti-Hipertensivos/análise
14.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096885

RESUMO

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


Assuntos
Antioxidantes/metabolismo , Ocimum basilicum/química , Antioxidantes/química , Antioxidantes/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Ocimum basilicum/metabolismo , Picratos/antagonistas & inibidores , Ácidos Sulfônicos/antagonistas & inibidores , Tailândia
15.
ACS Omega ; 5(38): 24211-24221, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015437

RESUMO

Cadmium nanoparticles (NPs) used in semiconducting devices are photosensitive and optically active. The objective of this study was to investigate the interactive effect of different spectral lights and CdO NPs on morphological, antioxidant, and phytochemical characteristics of Dodonaea viscosa. The plants were grown on media in the presence of green and chemically synthesized CdO NPs and under red, yellow, green, blue, and white light intensities. Results illustrated that plant morphological parameters changed in the presence of different spectral lights and NPs behaved differentially under different spectral lights. Fresh and dry weights of plants decreased in the presence of NPs in the media; however, the concentration and route of synthesis of NPs have a significant effect on these parameters. The same was observed in the case of shoot and root lengths; however, green synthesized NPs were found to be less toxic under different spectral lights. The total antixodant response increased under yellow, blue, and white lights, while the total reducing potential of plant extracts significantly varied depending upon the NP concentration and light spectrum. Different spectral lights significantly influenced the syntheses of phenolics and flavonoids under CdO NP stress and light regimes. It is concluded that toxicity of NPs also depends upon the wavelength of striking light that varies the morphological, biochemical, and antioxidative response of the plants. Furthermore, the white light might have synergistic effects of different wavelengths.

16.
BMC Complement Med Ther ; 20(1): 313, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066787

RESUMO

BACKGROUND: Ethnobotanical and plant-based products allow for the isolation of active constituents against a number of maladies. Monotheca buxifolia is used by local communities due to its digestive and laxative properties, as well as its ability to cure liver, kidney, and urinary diseases. There is a need to explore the biological activities and chemical constituents of this medicinal plant. METHODS: In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts. RESULTS: Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems. CONCLUSIONS: UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Paquistão , Folhas de Planta , Caules de Planta
17.
ACS Omega ; 5(11): 5739-5747, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226852

RESUMO

Metallic nanoparticles (NPs) have enormous applications due to their remarkable physical and chemical properties. The synthesis of NPs has been a matter of concern because chemical methods are toxic. On the contrary, biological methods are considered eco-friendly. To compare the toxicity and the environment-friendly nature of the synthesis methodologies, cadmium NPs were synthesized through chemical (Ch) (co-precipitation) and biological (plant extracts as reducing agent) methods. Cadmium nitrate was reduced with NaOH, while in the biological method, the Cd ions were reduced by Artemisia scoparia (As) and Cannabis sativa (Cs) extracts. X-ray diffraction (XRD) analysis confirmed the pure single-phase cubic structure of green and chemically synthesized CdO NPs except As-CdO NPs that were crystalline cum amorphous in nature. The size of nanoparticles was 84 nm (Cs-CdO NPs) and 42.2 nm (Ch-CdO NPs). The scanning electron microscope (SEM) images exhibited an irregular disklike morphology of nanoparticles that agglomerated more in the case of green synthesis. The antioxidant and antimicrobial potential of NPs revealed that chemically synthesized NPs have better antimicrobial capability, while the antioxidative activities were better for green-synthesized NPs. However, the low yield, high ion disassociation, and waste (unreacted metal) production in the green synthesis of CdO NPs increase the risk of contamination to biosphere. Both types of NPs did not affect the seed germination of Dodonaea viscosa. However, chemically synthesized NPs were less toxic on plant morphological response. The study concludes that the chemically synthesized CdO NPs have better morphology, significant antimicrobial activity, and less toxicity to plant species compared to green-synthesized NPs. Moreover, during the green synthesis, unreacted metals are drained, which causes contamination to the ecosystem.

18.
Med Chem ; 16(4): 495-506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31713490

RESUMO

BACKGROUND: Silver nanoparticles synthesized by the bio-green method have been applied to various biomedical applications. These procedures are simple, eco-friendly and serve as an alternative to complex chemical methods for the preparation of nanomaterials. OBJECTIVE: In the present study, phytosynthesis of silver nanoparticles, to examine their antioxidant potential, toxic effects towards bacterial-, fungal-strains, brine shrimp nauplii and cancer cells was focused. METHODS: Methanolic extract of Euphorbia wallichii roots was used for the synthesis of silver nanoparticles. The synthesis was monitored and confirmed by UV-visible spectroscopy, Fourier Transform Infra-Red (FTIR) spectrometric analysis, Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray (EDX) and X-Ray Powder Diffraction (XRD). RESULTS: The synthesized particles were average 63±8 nm in size. Involvement of phenolic (46.7±2.4 µg GAE/mg) and flavonoid (11.7±1.2 µg QE/mg) compounds as capping agents was also measured. Nanoparticles showed antioxidant properties in terms of free radical scavenging potential (59.63±1.0 %), reducing power (44.52±1.34 µg AAE/mg) and total antioxidant capacity (60.48±2.2 µg AAE/mg). The nanoparticles showed potent cytotoxic effects against brine shrimp nauplii (LD50 66.83 µg/ml), proliferation and cell death of HeLa cells as determined by MTT (LD50 0.3923 µg/ml) and TUNEL assays, respectively. Antimicrobial results revealed that silver nanoparticles were found to be more potent against pathogenic fungal (maximum active against A. fumigatus, MIC 15 µg/disc) and bacterial strains (maximum active against S. aureus, MIC 3.33 µg/disc) than the E. wallichii extract alone. CONCLUSION: These results support the advantages of using an eco-friendly and cost-effective method for synthesis of nanoparticles with antioxidant, cytotoxic and antimicrobial potential.


Assuntos
Euphorbia/química , Nanopartículas Metálicas/química , Extratos Vegetais/metabolismo , Prata/metabolismo , Prata/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Flavonoides/análise , Células HeLa , Humanos , Fenóis/análise , Prata/química
19.
Nat Prod Res ; 34(5): 720-725, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30320505

RESUMO

The present study reports ecofriendly synthesis of CuO nanoparticles (NPs) using an extract of Rhus punjabensis as a reducing agent. NPs structural and composition analysis are evaluated by X-rays diffraction (XRD), Fourier transform infrared, Energy dispersive spectroscopy, Scanning electron microscopy, Transmission electron microscopy, and Thermal analysis. The NPs have pure single phase monoclinic geometry with spherical structure and high stability toward heat and with average particle size of about 36.6 and 31.27 nm calculated by XRD and SEM, respectively. NPs are tested for antibacterial, protein kinase (PK) inhibition, SRB cytotoxic, and NF-κB activities. Antibacterial activity is observed against B. subtilis and E. coli. Significant PK and SRB cytotoxic activity is observed with some NF-κB inhibition. NPs IC50 values against HL-60 and PC-3 prostate cancer cells are 1.82 ± 1.22 and 19.25 ± 1.55 µg/mL. The results encourage further studies for antibacterial and anticancer drug development of NPs using animal models.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Cobre/química , Nanopartículas Metálicas/química , Rhus/química , Animais , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica/métodos , Tamanho da Partícula , Extratos Vegetais/química , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , Difração de Raios X
20.
Pak J Pharm Sci ; 32(4): 1687-1695, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31608891

RESUMO

Peel, pulp and kernel extracts of seven mango fruit (varieties) were analyzedsubjected for antibacterial and antioxidative potential. Langra peel showed good activity against B. subtilis, S. aureus and E. aerogenes. Good zone of inhibition by chaunsa kernel (28mm) and pulp (22mm) against Streptomyces stipulate its potential as anticarcinogencancerous. Dosehri and almashil pulp and sindhri peel asserted free radical scavenger (upto 79%) determined through DPPH assay. The peel and kernel of almashil contained maximum (total) flavonoids contents (58 & 43µgQE/100mg, respectively) while; total phenolics were higher in kernel of sindhri, chaunsa, langra and hujra and almashil pulp. Reducing power potential demonstrated variation from 300 to 554µgAAE/100mg. Total antioxidant potential was maximum in hujra pulp (512µg AAE/100mg). Concluded This study concludes that mango has vast beneficial potential for prone to human health and may also be used for isolation of antioxidative and antimicrobial as well as a protein kinase inhibition agent.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Mangifera/química , Inibidores de Proteínas Quinases/farmacologia , Antibacterianos/química , Antioxidantes/química , Compostos de Bifenilo , Avaliação Pré-Clínica de Medicamentos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Frutas/química , Testes de Sensibilidade Microbiana , Paquistão , Fenóis/análise , Picratos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/química , Sementes/química , Especificidade da Espécie , Streptomyces/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA