Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 9(8): e1001128, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21886480

RESUMO

Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ) is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5) of the three subunits with homology to bacterial Mrp-type Na(+)/H(+) antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais/metabolismo , Bombas de Próton/metabolismo , Yarrowia/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Ensaios Enzimáticos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Técnicas de Inativação de Genes , Microscopia Eletrônica , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Peso Molecular , Conformação Proteica , Bombas de Próton/química , Yarrowia/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(34): 14121-6, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21836051

RESUMO

We used electron cryotomography to study the molecular arrangement of large respiratory chain complexes in mitochondria from bovine heart, potato, and three types of fungi. Long rows of ATP synthase dimers were observed in intact mitochondria and cristae membrane fragments of all species that were examined. The dimer rows were found exclusively on tightly curved cristae edges. The distance between dimers along the rows varied, but within the dimer the distance between F(1) heads was constant. The angle between monomers in the dimer was 70° or above. Complex I appeared as L-shaped densities in tomograms of reconstituted proteoliposomes. Similar densities were observed in flat membrane regions of mitochondrial membranes from all species except Saccharomyces cerevisiae and identified as complex I by quantum-dot labeling. The arrangement of respiratory chain proton pumps on flat cristae membranes and ATP synthase dimer rows along cristae edges was conserved in all species investigated. We propose that the supramolecular organization of respiratory chain complexes as proton sources and ATP synthase rows as proton sinks in the mitochondrial cristae ensures optimal conditions for efficient ATP synthesis.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Substâncias Macromoleculares/metabolismo , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Animais , Bovinos , Complexo I de Transporte de Elétrons/ultraestrutura , Fungos/enzimologia , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Multimerização Proteica , Solanum tuberosum/enzimologia , Tomografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA