Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Primatol ; 80(12): e22935, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30537386

RESUMO

Vitamin D adequacy is essential for multiple physiologic processes. With limited exposure to sunlight for vitamin D3 synthesis, captive primates are supplemented with vitamin D3 (cholecalciferol). Vitamin D metabolite data from wild primates living indigenously could suggest optimum levels. The purpose of this study was to: 1) to explore whether baboons, a speciose genus whose members have significant exposed skin, coat color variation and wide geographical distribution, mirrors the skin pigmentation-vitamin D relationship found in humans; 2) compare vitamin D metabolite levels in wild and captive members of the same or similar baboon species; and 3) apply a recently developed method currently used in humans for measuring multiple vitamin D metabolites as a panel to explore if/how these metabolites can inform us on vitamin D sufficiency. Serum samples from males of three baboon species in the wild: Papio anubis (olive baboon, dark exposed skin), P. cynocephalus (yellow baboon, brown exposed skin), and P. hamadryas (hamadryas baboon, pink exposed skin), were compared with vitamin D supplemented captive olive baboons with sun exposure. Liquid chromatography/tandem mass spectrometry (LC/MS/MS) measured vitamin D and its main metabolites. Cholecalciferol, 25 hydroxyvitamin D2&3 (25(OH)D2&3 ), and 24,25 dihydroxyvitamin D2&3 (24,25(OH)2 D2&3 ), showed significant differences by species. The levels of cholecalciferol due to supplements in the captive olive baboons did not convert to higher 25(OH)D3 while the wild olive baboons exhibited the lowest levels for both cholecalciferol and 25(OH)D3 . Further metabolic conversion of 25(OH)D3 to 24,25(OH)2 D3 indicated that all baboons had more similar conversion ratios and these were within the same range found for humans that are depicted as having adequate vitamin D levels. This study provided evidence that exposed skin color does influence vitamin D3 levels, with lower levels in darker skinned species, but these differences are eliminated in the downstream metabolite conversion indicating strong regulatory control.


Assuntos
Animais Selvagens , Animais de Zoológico , Papio/sangue , Vitamina D/farmacologia , África Subsaariana , Envelhecimento , Distribuição Animal , Animais , Suplementos Nutricionais , Masculino , Papio/metabolismo , Pigmentação da Pele , Especificidade da Espécie , Vitamina D/administração & dosagem , Vitamina D/sangue , Vitamina D/metabolismo , Deficiência de Vitamina D/prevenção & controle
2.
Am J Primatol ; 77(7): 801-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25845705

RESUMO

Vitamin D metabolites are widely studied for their roles in bone health, immune functions, and other potential physiologic roles in humans. However, the optimal blood levels of vitamin D metabolites are still unclear. Various methods for measuring vitamin D metabolites have been used and recently liquid chromatography tandem mass spectroscopy (LC-MS/MS) has been adopted as the gold standard for vitamin D metabolite measurement. Here, we report the use of LC-MS/MS to measure 25-hydroxyvitamin D (25(OH)D(2&3)), and 1,25-dihydroxyvitamin D (1,25(OH)2D(2&3)), in three laboratory nonhuman primate species: common marmoset (Callithrix jacchus), rhesus macaque (Macaca mulatta), and cynomolgus macaque (Macaca fascicularis), and compare them to humans using the same technique. The nonhuman primates showed blood levels for 25(OH)D3 and 1,25(OH)2D3 significantly higher than human values with marmosets having the highest levels. Marmoset samples showed significantly more variability among individuals than those from macaques for both metabolites, but all three nonhuman primate species exhibited large variation within species for both 25(OH)D(2&3) and 1,25(OH)2D(2&3). Marmoset females had significantly lower values than the males for 25(OH)D3, while rhesus males showed a significant decrease in 25(OH)D3 with age. The most striking finding is the variation within species for vitamin D levels even in laboratory primates that have a controlled diet, UV exposure, and in some cases, genetic constraints. Similar variation in 25(OH)D responses to a fixed dose of oral vitamin D supplementation has been reported in humans. We suggest that these species can provide primate models for examining the factors influencing variation in the levels of vitamin D necessary for human and nonhuman primate health.


Assuntos
Callithrix/sangue , Macaca fascicularis/sangue , Macaca mulatta/sangue , Vitamina D/análogos & derivados , Fatores Etários , Animais , Cromatografia Líquida , Feminino , Humanos , Masculino , Fatores Sexuais , Especificidade da Espécie , Espectrometria de Massas em Tandem , Vitamina D/sangue
3.
J Neurosci ; 33(49): 19051-9, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24305803

RESUMO

Release of gonadotropin releasing hormone (GnRH) from the medial basal hypothalamus (MBH)/median eminence region (S-ME) is essential for normal reproductive function. GnRH release is profoundly regulated by the negative and positive feedback effects of ovarian estradiol (E2). Here we report that neuroestradiol, released in the S-ME, also directly influences GnRH release in ovariectomized female monkeys, in which the ovarian source of E2 is removed. We found that (1) brief infusion of E2 benzoate (EB) to the S-ME rapidly stimulated release of GnRH and E2 in the S-ME of ovariectomized monkeys, (2) electrical stimulation of the MBH resulted in GnRH release as well as E2 release, and (3) direct infusion of an aromatase inhibitor to the S-ME suppressed spontaneous GnRH release as well as the EB-induced release of GnRH and E2. These findings reveal the importance of neuroestradiol as a neurotransmitter in regulation of GnRH release. How circulating ovarian E2 interacts with hypothalamic neuroestrogens in the control of GnRH release remains to be investigated.


Assuntos
Estradiol/análogos & derivados , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Animais , Inibidores da Aromatase/farmacologia , Cromatografia Líquida de Alta Pressão , Estimulação Elétrica , Eletrodos Implantados , Estradiol/farmacologia , Feminino , Hipotálamo Médio/efeitos dos fármacos , Hipotálamo Médio/metabolismo , Letrozol , Macaca mulatta , Espectrometria de Massas , Eminência Mediana/efeitos dos fármacos , Eminência Mediana/metabolismo , Microdiálise , Nitrilas/farmacologia , Ovariectomia , Radioimunoensaio , Triazóis/farmacologia
4.
Horm Behav ; 62(5): 553-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23010620

RESUMO

Numerous studies have examined the effects of anthropogenic endocrine disrupting compounds; however, very little is known about the effects of naturally occurring plant-produced estrogenic compounds (i.e., phytoestrogens) on vertebrates. To examine the seasonal pattern of phytoestrogen consumption and its relationship to hormone levels (407 fecal samples analyzed for estradiol and cortisol) and social behavior (aggression, mating, and grooming) in a primate, we conducted an 11-month field study of red colobus (Procolobus rufomitratus) in Kibale National Park, Uganda. The percent of diet from estrogenic plants averaged 10.7% (n=45 weeks; range: 0.7-32.4%). Red colobus fed more heavily on estrogenic Millettia dura young leaves during weeks of higher rainfall, and the consumption of this estrogenic item was positively correlated to both their fecal estradiol and cortisol levels. Social behaviors were related to estradiol and cortisol levels, as well as the consumption of estrogenic plants and rainfall. The more the red colobus consumed estrogenic plants the higher their rates of aggression and copulation and the lower their time spent grooming. Our results suggest that the consumption of estrogenic plants has important implications for primate health and fitness through interactions with the endocrine system and changes in hormone levels and social behaviors.


Assuntos
Comportamento Animal/fisiologia , Colobus , Ingestão de Alimentos/fisiologia , Hormônios/metabolismo , Fitoestrógenos/administração & dosagem , Agressão/efeitos dos fármacos , Agressão/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Clima , Colobus/sangue , Colobus/metabolismo , Colobus/fisiologia , Eucalyptus , Feminino , Ficus , Asseio Animal/efeitos dos fármacos , Asseio Animal/fisiologia , Hormônios/sangue , Masculino , Millettia , Fitoestrógenos/farmacologia , Prognóstico , Estações do Ano , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA