Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 20, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627574

RESUMO

Although the interaction between P and Zn has long been recognized in plants, the physiological and molecular mechanisms underlying P and Zn interactions are poorly understood. We show here that P supply decreases the Zn concentration in maize shoots and roots. Compared to +P + Zn (addition of both P and Zn), +P-Zn reduced and -P-Zn increased the total length of 1° lateral roots (LRs). Under +P + Zn, both P and Zn concentrations were lower in the sl1 mutant roots than in wild-type (WT) maize roots, and P accumulation did not reduce the Zn concentration in ll1 mutant roots. Transcriptome profiling showed that the auxin signaling pathway contributed to P-mediated Zn homeostasis in maize. Auxin production and distribution were altered by changes in P and Zn supply. Cytosolic Zn co-localized with auxin accumulation under +P + Zn. Exogenous application of 1-NAA and L-Kyn altered the P-mediated root system architecture (RSA) under Zn deficiency. -P-Zn repressed the expression of miR167. Overexpression of ZmMIR167b increased the lengths of 1° LRs and the concentrations of P and Zn in maize. These results indicate that auxin-dependent RSA is important for P-mediated Zn homeostasis in maize.HighlightAuxin-dependent RSA is important for P-mediated Zn homeostasis in maize.


Assuntos
Fósforo , Zea mays , Fósforo/metabolismo , Zea mays/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostase , Zinco/metabolismo , Transdução de Sinais
2.
Environ Res ; 203: 111792, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333009

RESUMO

High-quality products in sustainable agriculture require both limited health risks and sufficient dietary nutrients. Phosphorus (P) as a finite and non-renewable resource is widely used in agriculture, usually exerting influence on the accumulation of heavy metals (HMs) in soil and crops. The present research explores, for the first time, the combined effects of long-term P fertilizer and repeated zinc (Zn) application in field on the human health risks and nutritional yield regarding trace elements in maize grain. A field experiment was conducted using maize with six P application rates (0, 12.5, 25, 50, 100, and 200 kg P ha-1) and two Zn application rates (0 and 11.4 kg Zn ha-1). The results showed that the concentrations of Zn, copper (Cu), and lead (Pb) in the maize grain were significantly affected by P application and can be further affected by Zn application. The concentrations of chromium (Cr) and arsenic (As) showed opposite tendency as affected by P fertilizer rates while did not affected by additional Zn application. Zn application decreased the cadmium (Cd) concentration at high P levels and Pb concentration at low P levels, particularly. No HMs contamination or direct health risk was found in maize grain after receiving long-term P and repeated Zn fertilizer. The threshold hazard quotient of an individual and all investigated HMs in this study were acceptable for human digestion of maize grain. While the carcinogenic risk of Cr was non-negligible in case of maize was taken as one of daily staple food for local residents. Combination use of P (25 kg ha-1) and Zn fertilizer on maize enhanced its nutritional supply ability regarding Zn and Cu, and simultaneously mitigated potential human health risks associated with Cd and Pb.


Assuntos
Metais Pesados , Poluentes do Solo , Agricultura , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Fósforo , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zea mays
3.
Environ Pollut ; 262: 114348, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32182536

RESUMO

Phosphorus (P) fertilizer is widely used to increase wheat yield. However, it remains unclear whether prolonged intake of wheat grain that received long-term P application may promote human health risks by influencing heavy metal(loid)s (HMs) accumulation. A 10-year field experiment was conducted to evaluate the effects of continuous P application (0, 25, 50, 100, 200, and 400 kg P ha-1) on human health risks of HMs, including zinc (Zn), copper (Cu), cadmium (Cd), lead (Pb), arsenic (As), nickel (Ni), and chromium (Cr), by ingesting wheat grain. The results showed that P application facilitated Zn, Pb, Cd, and As accumulation in the topsoil. The Zn, Cu, Pb, and Ni concentrations in grain were decreased, while Cd and As were increased by P application. All HMs concentrations of both soil and grain were in the ranges of corresponding safety thresholds at different P levels. The accumulation abilities of Zn, Cu, Pb, and Ni from soil and straw to grain were suppressed by P addition while of As was enhanced. There was no significant difference in the hazard index (HI) of the investigated HMs in all treatments except 25 kg ha-1. The threshold cancer risk (TCR) associated with As and Cd was enhanced, while that of Pb was alleviated as P application increased. Behaviors of Cr from soil to wheat and to humans were not affected by P application. Phosphorus application at a rate of 50 kg ha-1 decreased total non-cancer and cancer risks by 15% and 21%, respectively, for both children and adults, compared to the highest value. In conclusion, long-term optimal application of 50 kg P ha-1 to wheat did not result in additional adverse effects on the total non-carcinogenic or carcinogenic risk caused by the studied HMs to humans through the ingestion of wheat grain.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Criança , China , Monitoramento Ambiental , Fertilizantes , Humanos , Fósforo , Medição de Risco , Solo , Triticum
4.
Sci Rep ; 9(1): 16580, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719561

RESUMO

Although researchers have determined that attaining high grain yields of winter wheat depends on the spike number and the shoot biomass, a quantitative understanding of how phosphorus (P) nutrition affects spike formation, leaf expansion and photosynthesis is still lacking. A 3-year field experiment with wheat with six P application rates (0, 25, 50, 100, 200, and 400 kg P ha-1) was conducted to investigate this issue. Stem development and mortality, photosynthetic parameters, dry matter accumulation, and P concentration in whole shoots and in single tillers were studied at key growth stages for this purpose. The results indicated that spike number contributed the most to grain yield of all the yield components in a high-yielding (>8 t/ha) winter wheat system. The main stem (MS) contributed 79% to the spike number and tiller 1 (T1) contributed 21%. The 2.7 g kg-1 tiller P concentration associated with 15 mg kg-1 soil Olsen-P at anthesis stage led to the maximal rate of productive T1s (64%). The critical shoot P concentration that resulted in an adequate product of Pn and LAI was identified as 2.1 g kg-1. The thresholds of shoot P concentration that led to the maximum productive ability of T1 and optimal canopy photosynthetic capacity at anthesis were very similar. In conclusion, the thresholds of soil available P and shoot P concentration in whole plants and in single organs (individual tillers) were established for optimal spike formation, canopy photosynthetic capacity, and dry matter accumulation. These thresholds could be useful in achieving high grain yields while avoiding excessive P fertilization.


Assuntos
Fertilizantes , Fósforo/metabolismo , Fotossíntese , Brotos de Planta/fisiologia , Estações do Ano , Solo/química , Triticum/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Água
5.
Sci Rep ; 7(1): 7016, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765540

RESUMO

Increasing grain zinc (Zn) concentration of cereals for minimizing Zn malnutrition in two billion people represents an important global humanitarian challenge. Grain Zn in field-grown wheat at the global scale ranges from 20.4 to 30.5 mg kg-1, showing a solid gap to the biofortification target for human health (40 mg kg-1). Through a group of field experiments, we found that the low grain Zn was not closely linked to historical replacements of varieties during the Green Revolution, but greatly aggravated by phosphorus (P) overuse or insufficient nitrogen (N) application. We also conducted a total of 320-pair plots field experiments and found an average increase of 10.5 mg kg-1 by foliar Zn application. We conclude that an integrated strategy, including not only Zn-responsive genotypes, but of a similar importance, Zn application and field N and P management, are required to harvest more grain Zn and meanwhile ensure better yield in wheat-dominant areas.


Assuntos
Agricultura/métodos , Grão Comestível/química , Triticum/química , Triticum/crescimento & desenvolvimento , Zinco/análise , Fertilizantes , Genótipo , Humanos , Nitrogênio/metabolismo , Fósforo/metabolismo , Triticum/genética , Triticum/metabolismo
6.
J Sci Food Agric ; 92(12): 2552-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22450931

RESUMO

BACKGROUND: Zinc (Zn) deficiency, a major problem limiting crop production worldwide, is common on calcareous soils of China. Using such a Zn-deficient soil supplied adequately with plant mineral nutrients, with or without Zn, 30 Chinese maize genotypes were grown for 30 days in a greenhouse pot experiment and assessed for Zn efficiency (ZE), measured as relative biomass under Zn-limiting compared with non-limiting conditions. RESULTS: Substantial variation in tolerance to low Zn nutritional status was observed within the maize genotypes. Tolerant genotypes did not show Zn deficiency symptoms at the studied early seedling growth, and there was a well-defined relationship between shoot dry matter and the ZE trait. ZE values ranged on average from 45 to 100% for shoot dry weight. Under low available soil Zn conditions, shoot and root dry weights, shoot Zn concentration and content, leaf superoxide dismutase (SOD) activity, leaf area and plant height were all correlated with ZE. Shoot Zn and phosphorus (P) concentrations were negatively correlated. CONCLUSION: Three genotypes (L55 × 178, L114 × 178 and Zhongnong 99) were identified as highly Zn-efficient and three (L53 × 178, L105 × 178 and L99 × 178) as very low in ZE. This selection allows further work to evaluate ZE based on grain yield and grain Zn concentration, including field experiments likely to benefit farmers producing maize on Chinese soils low in available Zn.


Assuntos
Adaptação Biológica/genética , Biomassa , Genótipo , Estruturas Vegetais/crescimento & desenvolvimento , Solo/química , Zea mays/genética , Zinco/metabolismo , China , Fertilizantes , Fósforo/metabolismo , Estruturas Vegetais/metabolismo , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zinco/deficiência
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(4): 1104-7, 2009 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-19626912

RESUMO

Deficiency of micronutrients, especially iron and zinc, has been a serious malnutrition problem worldwide in human health. Increasing Fe and Zn concentrations in grains by means of plant breeding is a sustainable, effective and important way to improve human mineral nutrition and health. However, little information on grain Fe and Zn concentrations in Chinese wheat genotypes is available. Therefore, to determine the nutrients status especially these of micronutrients in wheat grain is necessary and very useful. Two hundred sixty two genotypes were selected from the wheat mini-core collections, which contained 23090 wheat genotypes in China and represented 72.2% of total genetic variation. All 262 genotypes were grown in soils of similar geographical and climate location in order to minimize the environmental effect. After harvesting, the grains were washed with deionized water and dried (around 70 degrees C), then digested in HNO3 solution using a microwave accelerating reaction system (MARS). Nutrient concentrations in stock solution were analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Remarkable genetic variations among grain nutrient concentrations (Fe, Mn, Cu, Zn, Mg, Ca, K and P ) in the tested genotypes were detected. The concentrations of Fe, Zn, Mn, Cu, Ca, Mg, K and P in wheat grain were in the ranges of 34.2-61.2, 26.3-76.0, 20.9-56.7, 3.4-9.8, 290-976, 1129-2210 mg x kg(-1); 0.34%-0.85% and 0.296%-0.580%, respectively. The corresponding average values were 45.1, 50.2, 37.9, 6.5, 515, 1772 mg x kg(-1), 0.55% and 0.451%, respectively. Significant positive correlations between micronutrients (Fe, Mn, Zn, and Cu) in wheat grains were detected, and the correlation coefficients were 0.395** (Fe and Mn), 0.424** (Fe and Zn), 0.574** (Fe and Cu), and 0.474** (Mn and Cu), respectively. However, no significant difference was found in grain nutrient concentrations between spring-wheat and winter-wheat genotypes. This study provides valuable and important information for breeding wheat genotypes which are enriched with minerals in grains, especially Fe and Zn


Assuntos
Extratos Vegetais/análise , Espectrofotometria Atômica/métodos , Oligoelementos/análise , Triticum/química , China , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA