Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(18): 8791-8806, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38606497

RESUMO

This review explores the potential of integrating nano-delivery systems with traditional Chinese herbal medicine, acupuncture, and Chinese medical theory. It highlights the intersections and potential of nano-delivery systems in enhancing the effectiveness of traditional herbal medicine and acupuncture treatments. In addition, it discusses how the integration of nano-delivery systems with Chinese medical theory can modernize herbal medicine and make it more readily accessible on a global scale. Finally, it analyzes the challenges and future directions in this field.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina Tradicional Chinesa , Nanotecnologia , Humanos , Terapia por Acupuntura , Medicamentos de Ervas Chinesas/química
2.
Chem Soc Rev ; 53(7): 3224-3252, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38379286

RESUMO

Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Antígenos de Neoplasias , Medicina de Precisão , Neoplasias/diagnóstico , Neoplasias/terapia , Imunoterapia , Nanotecnologia , Microambiente Tumoral
3.
Front Pharmacol ; 14: 1091177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324453

RESUMO

Objective: Nowadays, primary liver carcinoma (PLC) is one of the major contributors to the global cancer burden, and China has the highest morbidity and mortality rates in the world. As a well-known Chinese herbal medicine (CHM) prescription, Huatan Sanjie Granules (HSG) has been used clinically for many years to treat PLC with remarkable efficacy, but the underlying mechanism of action remains unclear. Methods: A clinical cohort study was conducted to observe the overall survival of PLC patients with vs. without oral administration of HSG. Meanwhile, the BATMAN-TCM database was used to retrieve the potential active ingredients in the six herbs of HSG and their corresponding drug targets. PLC-related targets were then screened through the Gene Expression Omnibus (GEO) database. The protein-protein interaction (PPI) network of targets of HSG against PLC was constructed using Cytoscape software. The cell function assays were further carried out for verification. Results: The results of the cohort study showed that the median survival time of PLC patients exposed to HSG was 269 days, which was 23 days longer than that of the control group (HR, 0.62; 95% CI, 0.38-0.99; p = 0.047). In particular, the median survival time of Barcelona Clinic Liver Cancer stage C patients was 411 days in the exposure group, which was 137 days longer than that in the control group (HR, 0.59; 95% CI, 0.35-0.96; p = 0.036). Meanwhile, the enrichment analysis result for the obtained PPI network consisting of 362 potential core therapeutic targets suggest that HSG may inhibit the growth of liver cancer (LC) cells by blocking the PI3K-Akt/MAPK signaling pathways. Furthermore, the above prediction results were verified by a series of in vitro assays. Specifically, we found that the expressions TP53 and YWHA2, the targets of the hepatitis B virus signaling pathway, were significantly affected by HSG. Conclusion: HSG shows promising therapeutic efficacy in the adjuvant treatment of PLC.

4.
Angew Chem Int Ed Engl ; 62(27): e202304312, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137872

RESUMO

The metabolic reprogramming of tumors requires high levels of adenosine triphosphate (ATP) to maintain therapeutic resistance, posing a major challenge for photothermal therapy (PTT). Although raising the temperature helps in tumor ablation, it frequently leads to severe side effects. Therefore, improving the therapeutic response and promoting healing are critical considerations in the development of PTT. Here, we proposed a gas-mediated energy remodeling strategy to improve mild PTT efficacy while minimizing side effects. In the proof-of-concept study, a Food and Drug Administration (FDA)-approved drug-based hydrogen sulfide (H2 S) donor was developed to provide a sustained supply of H2 S to tumor sites, serving as an adjuvant to PTT. This approach proved to be highly effective in disrupting the mitochondrial respiratory chain, inhibiting ATP generation, and reducing the overexpression of heat shock protein 90 (HSP90), which ultimately amplified the therapeutic outcome. With the ability to reverse tumor thermotolerance, this strategy delivered a greatly potent antitumor response, achieving complete tumor ablation in a single treatment while minimizing harm to healthy tissues. Thus, it holds great promise to be a universal solution for overcoming the limitations of PTT and may serve as a valuable paradigm for the future clinical translation of photothermal nanoagents.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Neoplasias/tratamento farmacológico , Temperatura , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Fototerapia
5.
Mater Horiz ; 10(8): 3014-3023, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37194333

RESUMO

Phototherapy-induced hypoxia in the tumor microenvironment (TME) is responsible for diminished therapeutic efficacy. Designing an intelligent nanosystem capable of responding to hypoxia for TME-responsive drug delivery will, to some extent, improve the therapeutic efficacy and reduce side effects. Semiconducting polymers with high photothermal conversion efficiency and photostability have tremendous potential as phototheranostics. In this paper, hypoxia-activatable tirapazamine (TPZ) was conjugated onto poly(ethylene glycol) to form a pH-sensitive poly-prodrug, PEG-TPZ, that can be triggered by the low acidity of the TME to cleave the acylamide bond for controllable drug release. PEG-TPZ was then used to encapsulate a semiconducting polymer (TDPP) for NIR-II-fluorescence-imaging-guided synergistic therapy. The reactive oxygen species (ROS) generation and ultrahigh photothermal conversion efficiency (∼58.6%) of the TDPP@PEG-TPZ NPs leads to the destruction of the tumor blood vessels, thus further activating the hypoxia-induced chemotherapy of TPZ. As a result, effective tumor regression was achieved after laser irradiation.

6.
Adv Sci (Weinh) ; 10(6): e2204842, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599677

RESUMO

Photoimmunotherapy, with spatiotemporal precision and noninvasive property, has provided a novel targeted therapeutic strategy for highly malignant triple-negative breast cancer (TNBC). However, their therapeutic effect is severely restricted by the insufficient generation of tumor antigens and the weak activation of immune response, which is caused by the limited tissue penetration of light and complex immunosuppressive microenvironment. To improve the outcomes, herein, mace-like plasmonic AuPd heterostructures (Au Pd HSs) have been fabricated to boost near-infrared (NIR) photoimmunotherapy. The plasmonic Au Pd HSs exhibit strong photothermal and photodynamic effects under NIR light irradiation, effectively triggering immunogenic cell death (ICD) to activate the immune response. Meanwhile, the spiky surface of Au Pd HSs can also stimulate the maturation of DCs to present these antigens, amplifying the immune response. Ultimately, combining with anti-programmed death-ligand 1 (α-PD-L1) will further reverse the immunosuppressive microenvironment and enhance the infiltration of cytotoxic T lymphocytes (CTLs), not only eradicating primary TNBC but also completely inhibiting mimetic metastatic TNBC. Overall, the current study opens a new path for the treatment of TNBC through immunotherapy by integrating nanotopology and plasmonic performance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Fototerapia , Imunoterapia , Antígenos de Neoplasias , Microambiente Tumoral
7.
Adv Mater ; 35(21): e2209529, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36445169

RESUMO

Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Sistemas de Liberação de Medicamentos , Núcleo Celular , Mitocôndrias , Neoplasias/tratamento farmacológico , Neoplasias/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-36276869

RESUMO

The pharmacological mechanism of curcumin against drug resistance in non-small cell lung cancer (NSCLC) remains unclear. This study aims to summarize the genes and pathways associated with curcumin action as an adjuvant therapy in NSCLC using network pharmacology, drug-likeness, pharmacokinetics, functional enrichment, protein-protein interaction (PPI) analysis, and molecular docking. Prognostic genes were identified from the curcumin-NSCLC intersection gene set for the following drug sensitivity analysis. Immunotherapy, chemotherapy, and targeted therapy sensitivity analyses were performed using external cohorts (GSE126044 and IMvigor210) and the CellMiner database. 94 curcumin-lung adenocarcinoma (LUAD) hub targets and 41 curcumin-lung squamous cell carcinoma (LUSC) hub targets were identified as prognostic genes. The anticancer effect of curcumin was observed in KEGG pathways involved with lung cancer, cancer therapy, and other cancers. Among the prognostic curcumin-NSCLC intersection genes, 20 LUAD and 8 LUSC genes were correlated with immunotherapy sensitivity in the GSE126044 NSCLC cohort; 30 LUAD and 13 LUSC genes were associated with immunotherapy sensitivity in the IMvigor210 cohort; and 12 LUAD and 13 LUSC genes were related to chemosensitivity in the CellMiner database. Moreover, 3 LUAD and 5 LUSC genes were involved in the response to targeted therapy in the CellMiner database. Curcumin regulates drug sensitivity in NSCLC by interacting with cell cycle, NF-kappa B, MAPK, Th17 cell differentiation signaling pathways, etc. Curcumin in combination with immunotherapy, chemotherapy, or targeted drugs has the potential to be effective for drug-resistant NSCLC. The findings of our study reveal the relevant key signaling pathways and targets of curcumin as an adjuvant therapy in the treatment of NSCLC, thus providing pharmacological evidence for further experimental research.

9.
ACS Nano ; 16(11): 19038-19052, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36315056

RESUMO

Fenton reaction-based chemodynamic therapy (CDT), which applies metal ions to convert less active hydrogen peroxide (H2O2) into more harmful hydroxyl peroxide (·OH) for tumor treatment, has attracted increasing interest recently. However, the CDT is substantially hindered by glutathione (GSH) scavenging effect on ·OH, low intracellular H2O2 level, and low reaction rate, resulting in unsatisfactory efficacy. Here, a cancer cell membrane (CM)-camouflaged Au nanorod core/mesoporous MnO2 shell yolk-shell nanocatalyst embedded with glucose oxidase (GOD) and Dox (denoted as AMGDC) is constructed for synergistic triple-augmented CDT and chemotherapy of tumor under MRI/PAI guidance. Benefiting from the homologous adhesion and immune escaping property of the cancer CM, the nanocatalysts can target tumor and gradually accumulate in tumor site. For triple-augmented CDT, first, the MnO2 shell reacts with intratumoral GSH to generate Mn2+ and glutathione disulfide, which achieves Fenton-like ion delivery and weakening of GSH-mediated scavenging effect, leading to GSH depletion-enhanced CDT. Second, the intratumoral glucose can be oxidized to H2O2 and gluconic acid by GOD, achieving supplementary H2O2-enhanced CDT. Next, the AuNRs absorbing in NIR-II elevate the local tumor temperature upon NIR-II laser irradiation, achieving photothermal-enhanced CDT. Dox is rapidly released for adjuvant chemotherapy due to responsive degradation of MnO2 shell. Moreover, GSH-activated PAI/MRI can be used to monitor CDT process. This study provides a great paradigm for enhancing CDT-mediated antitumor efficacy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Biomimética , Peróxido de Hidrogênio/metabolismo , Compostos de Manganês/farmacologia , Linhagem Celular Tumoral , Óxidos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Glutationa/metabolismo , Glucose Oxidase/metabolismo , Microambiente Tumoral
10.
Front Pharmacol ; 13: 944475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176445

RESUMO

Background: The high incidence and mortality rates of colorectal cancer (CRC) are a severe challenge in China. In patients with stage III and high-risk stage II CRC after radical resection and postoperative adjuvant chemoradiotherapy, 40-60% experience recurrence and metastasis. Several years of clinical practice have shown that traditional Chinese medicine, including Jianpi Huatan granule (JHG), effectively prevents stage III and high-risk stage II CRC recurrence and metastasis after radical resection and postoperative standard adjuvant chemotherapy. However, high-level systematic plans and evidence-based medicine are lacking in this regard. Therefore, this randomised control trial aimes to determine the efficacy of JHG in reducing stage III and high-risk stage II CRC metastasis and recurrence after radical resection and postoperative standard adjuvant chemotherapy. Methods: This is a multicentre, randomised, double-blind, placebo-controlled clinical trial. Three hundred and fifty patients with stage III or high-risk stage II CRC who completed adjuvant chemotherapy after radical resection will be recruited from eight medical centres in China and randomly assigned to test (n = 175) and control (n = 175) groups at a ratio of 1:1. The test group will receive oral JHG for 3 months, whereas the control group will receive oral placebo for 3 months. The primary outcomes will be the disease-free survival and 1-, 2-, and 3-years metastasis and recurrence rates, whereas the secondary outcomes will be quality of life and circulating tumour cells. The patients will be followed-up monthly during treatment and every 3-6 months thereafter until recurrence, metastasis, death, or the end of the study. Trial registration: This trial was registered at ClinicalTrials.gov (NCT03716063).

11.
Acta Biomater ; 140: 601-609, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808416

RESUMO

Controllable self-assembly of photonic molecules for precise biomedicine is highly desirable but challenging to prepare multifunctional nano-phototheranostics. Herein, we developed a generic self-assembly approach to design nano-phototheranostics that provides NIR-II fluorescence imaging and phototherapy. We first designed and synthesized two amphiphilic photonic molecules, PEG2000-IR806 and BODIPY. Then, we prepared the co-self-assembled phototheranostic agents, PEG2000-IR806/BODIPY nanoparticles (PIBY NPs). The morphology of the PIBY NPs is controllable by adjusting the ratio of PEG2000-IR806 and BODIPY during self-assembly. The NIR-II fluorescence properties and phototherapy capability of the PIBY NPs were demonstrated in vitro and in vivo. By tuning the ratio of PEG2000-IR806 and BODIPY, the PIBY NPs showed various morphologies (e.g. spherical nanoparticles, nanovesicles and rod-like nanoparticles). The PEG2000-IR806 plays two roles in the co-self-assemblies, one is second near-infrared (NIR-II, 1000-1700 nm) agent, the other is the surfactant for BODIPY encapsulation. The phototherapeutic PIBY NPs all show bright NIR-II fluorescence and effective phototherapeutic (photothermal and photodynamic) properties, which are attributed to IR806 and BODIPY, respectively. The driving force of the self-assembly can be attributed to the electrostatic interaction between NIR806 and BODIPY and their hydrophobicity. The rod-like PIBY NPs (rPIBY NPs) demonstrated a low half inhibitory concentration (IC50) of 3.96 µg/mL on U87MG cells. The NIR-II imaging showed the accumulation of rPIBY NPs in the tumor region. After systemic injection of rPIBY NPs at low dose (0.5 mg/kg), the tumor growth was greatly inhibited upon laser irradiation without noticeable side effects. This study provides a generic self-assembly approach to fabricate NIR-II imaging and phototherapeutic platform for cancer phototheranostics. STATEMENT OF SIGNIFICANCE: Nanophototheranostics providing NIR-II fluorescence imaging and phototherapy are expected to play a critical role in modern precision medicine. Controllable self-assembly of optical molecules for the fabrication of efficient nanophototheranostics is highly desirable but challenging. This work reports for the first time the co-assembly of a NIR-II imaging contrast agent and a phototherapeutic agent to yield nanophototheranostics with various morphologies. The design of molecular co-assembly with complementary optical functions can be a generic method for future the development of phototheranostics.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Nanopartículas/uso terapêutico , Imagem Óptica , Fototerapia , Medicina de Precisão , Nanomedicina Teranóstica/métodos
12.
Adv Mater ; 33(44): e2103627, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34515384

RESUMO

Improving singlet oxygen (1 O2 ) lifespan by fractionated delivery in dark and hypoxic conditions is a better way to achieve enhanced phototherapeutic efficacy. Herein, three boron dipyrromethene (BODIPY) dyes are synthesized to demonstrate that anthracence-functionalized BODIPY, namely ABDPTPA is an efficient heavy-atom-free photosensitizer for the reversible capture and release of 1 O2 . The spin-orbit charge-transfer intersystem crossing of ABDPTPA promises a high 1 O2 quantum yield of 60% in dichloromethane. Under light irradiation, the anthracene group reacts with 1 O2 to produce endoperoxide. Interestingly, after termination of irradiation, the endoperoxide undergoes thermal cycloreversion to produce 1 O2 , and regenerates the anthracene module to achieve 1 O2 "afterglow," which results in a prolonged half lifetime of 1 O2 for 9.2 min. In vitro cytotoxicity assays indicate that ABDPTPA nanoparticles have a low half-maximal inhibitory concentration (IC50 ) of 3.6 µg mL-1 on U87MG cells. Further, the results of near-infrared-II fluorescence-imaging-guided phototherapy indicate that ABDPTPA nanoparticles can inhibit tumor proliferation even at a low dose (200 µg mL-1 , 100 µL) without any side effects. Therefore, the study provides a generalized 1 O2 "afterglow" strategy to enhance phototheranostics for complete tumor regression.


Assuntos
Oxigênio Singlete
13.
Biomater Sci ; 9(7): 2584-2597, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595023

RESUMO

It is widely accepted that a small particle size and rough surface can enhance tumor tissue accumulation and tumor cellular uptake of nanoparticles, respectively. Herein, sub-50 nm urchin-inspired disulfide bond-bridged mesoporous organosilica nanoparticles (UMONs) featured with a spiky surface and glutathione (GSH)-responsive biodegradability were successfully synthesized by a facile one-pot biphasic synthesis strategy for enhanced cellular internalization and tumor accumulation. l-Arginine (LA) is encapsulated into the mesopores of UMONs, whose outer surface is capped with the gatekeeper of ultrasmall gold nanoparticles, i.e., UMONs-LA-Au. On the one hand, the mild acidity-activated uncapping of ultrasmall gold can realize a tumor microenvironment (TME)-responsive release of LA. On the other hand, the unique natural glucose oxidase (GOx)-mimicking catalytic activity of ultrasmall gold can catalyze the decomposition of intratumoral glucose to produce acidic hydrogen peroxide (H2O2) and gluconic acid. Remarkably, these products can not only further facilitate the release of LA, but also catalyze the LA-H2O2 reaction for an increased nitric oxide (NO) yield, which realizes synergistic catalysis-enhanced NO gas therapy for tumor eradication. The judiciously fabricated UMONs-LA-Au present a paradigm of TME-responsive nanoplatforms for both enhanced cellular uptake and tumor-specific precision cascaded therapy, which broadens the range of practical biomedical applications and holds a significant promise for the clinical translation of silica-based nanotheranostics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro , Peróxido de Hidrogênio , Tamanho da Partícula , Dióxido de Silício
14.
J Inorg Biochem ; 212: 111236, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32889130

RESUMO

Boosting the photosensitization type I process will enhance the phototherapy efficacy because the superoxide radicals (O2-) generated during type I process are more toxic than the singlet oxygen (1O2) in type II process. Herein, [Ru(Hdtza)(phen)2][PF6] (1) and [Ru(pytz)(phen)2][PF6] (2) (phen = 1,10-phenanthroline) based on two nitrogen-rich tetrazole ligands, di(2H-tetrazol-5-yl) amine (H2dtza) and 5-(2-pyridyl)tetrazole (Hpytz) have been developed for photodynamic therapy (PDT) against lung cancer, respectively. Nanoprecipitation was used to prepare the nanoparticles (NPs) of both compounds. [Ru(Hdtza)(phen)2][PF6] NPs mainly undergo an electron transfer process to generate O2- while [Ru(pytz)(phen)2][PF6] the direct energy transfer to produce 1O2, which is responsible for the higher phototoxicity of [Ru(Hdtza)(phen)2][PF6] NPs (IC50 ~ 4.8 µg/mL) than that of [Ru(pytz)(phen)2][PF6] NPs (IC50 ~ 13.6 µg/mL) on human lung cancer cells (A549). Furthermore, in vivo study indicates that the tumor proliferation of nude mice can be effectively inhibited with the help of laser when the mice were injected with [Ru(pytz)(phen)2][PF6] NPs. This work may provide a simple strategy to design type I photosensitizers for enhanced photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Rutênio/química , Tetrazóis/química , Animais , Antineoplásicos/química , Humanos , Ligantes , Camundongos , Estrutura Molecular , Fotoquimioterapia , Compostos de Rutênio/farmacologia
15.
Angew Chem Int Ed Engl ; 59(23): 8833-8838, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943602

RESUMO

Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT-induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell-killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG-Py NPs) prepared by using a 2-pyridone-based diblock polymer (PEG-Py) to encapsulate a semiconducting, heavy-atom-free pyrrolopyrrolidone-tetraphenylethylene (DPPTPE) with high singlet-oxygen-generation ability both in dichloromethane and water. The PEG-Py can trap the 1 O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1 O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence-imaging-guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.


Assuntos
Escuridão , Fototerapia/métodos , Oxigênio Singlete/metabolismo , Hipóxia Tumoral/efeitos da radiação , Microambiente Tumoral/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Humanos , Lasers , Imagem Óptica , Polietilenoglicóis/química , Pirrolidinonas/química , Oxigênio Singlete/química , Estilbenos/química
16.
Chem Sci ; 10(1): 268-276, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30713637

RESUMO

Improving the deep-tissue phototherapy (PDT) efficiency in the near-infrared (NIR) region has become one of the major challenges in clinics for cancer treatment. Developing intelligent photosensitizers (PSs) responding to tumor-specific signals sensitively to minimize side effects is another major challenge for tumor phototherapy. Herein, three phenyl-based boron dipyrromethene (BODIPY) compounds with different numbers of diethylaminophenyl groups introduced onto the BODIPY core have been designed and synthesized by the Knoevenagel condensation reaction. The absorbance of these compounds (BDPmPh, BDPbiPh, and BDPtriPh) can be controlled easily for realizing the tunable penetration depth. Moreover, the diethylamino groups in these designed PSs can serve as proton acceptors triggered by the low pH in lysosomes which can enhance the efficacy of photodynamic and photothermal therapy. The corresponding nanoparticles (NPs) of the compounds are prepared through a nanoprecipitation method and in vitro studies demonstrate that the ultra-low drug dosage of BDPtriPh NPs (half-maximal inhibitory concentration, IC50 = 4.16 µM) is much lower than that of BDPmPh NPs (50.09 µM) and BDPbiPh NPs (22.4 µM). In vivo fluorescence imaging shows that these NPs can be passively targeted to tumors by the enhanced permeability and retention (EPR) effect, and BDPtriPh NPs exhibit the fastest accumulation (about 4 hours). In vivo phototherapy indicates that BDPtriPh NPs with the longest NIR absorbance (813 nm) and highest photothermal conversion efficiency (60.5%) can effectively inhibit tumor growth and reduce side effects to normal tissues. This study provides a strategy to modulate the photoconversion characteristics of PSs for both penetration-depth-tunable and pH-dependent PDT/PTT synergistic cancer therapy in clinics.

17.
J Inorg Biochem ; 193: 124-129, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30711558

RESUMO

Ru(II) compounds are potential candidates for photodynamic therapy (PDT) and auxiliary ligands may have an impact on the property of the resulting coordination compounds. In the present study, two Ru(II) compounds based on 5-(2-pyrazinyl)tetrazole (Hpztz) and two classic auxiliary ligands, 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) have been prepared and characterized, namely [Ru(pztz)(bipy)2][PF6] (1) and [Ru(pztz)(phen)2][PF6] (2). The nanoparticles (NPs) of the two compounds have been prepared by self-assembly in aqueous solution. In vitro MTT assay on HeLa cells show that [Ru(pztz)(phen)2][PF6] with a lower IC50 (half-maximal inhibitory concentration) of only 7.4 µg/mL is superior to that of [Ru(pztz)(bipy)2][PF6] (17.8 µg/mL) under irradiation. Meanwhile, negligible dark toxicity have been also observed for the two compounds. In addition, in vivo fluorescence imaging suggests that [Ru(pztz)(phen)2][PF6] NPs are able to target to the tumor by enhanced permeability and retention effect (EPR). Furthermore, in vivo phototherapy on nude mice demonstrate that such NPs can effectively inhibit the growth of the tumor. After treatment for 10 cycles, an obvious decrease in the tumor volume can be observed while the normal tissues, including heart, liver, spleen, lung and kidney, suffer from no damage, indicating the high phototoxicity, low dark toxicity and excellent biocompatibility of [Ru(pztz)(phen)2][PF6] NPs.


Assuntos
Antineoplásicos/uso terapêutico , Complexos de Coordenação/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Pirazinas/uso terapêutico , Tetrazóis/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Feminino , Células HeLa , Humanos , Ligantes , Luz , Camundongos Nus , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Pirazinas/síntese química , Pirazinas/efeitos da radiação , Rutênio/química , Tetrazóis/síntese química , Tetrazóis/efeitos da radiação , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Chem Sci ; 9(42): 8103-8109, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30542560

RESUMO

Emerging treatment approaches, such as gas therapy (GT), photodynamic therapy (PDT) and photothermal therapy (PTT), have received widespread attention. The development of an intelligent multifunctional nano-platform responding to tumor microenvironments for multimodal therapy is highly desirable. Herein, a near-infrared (NIR) light-responsive nitric oxide (NO) photodonor (4-nitro-3-trifluoromethylaniline, NF) and a pH-sensitive group (dimethylaminophenyl) have been introduced into a diketopyrrolopyrrole core (denoted as DPP-NF). The DPP-NF nanoparticles (NPs) can be activated under weakly acidic conditions of lysosomes (pH 4.5-5.0) to generate reactive oxygen species (ROS) and enhance photothermal efficiency. The fluorescence detection demonstrated that NO controllable release can be realized by "on-off" switching of the NF unit under NIR light irradiation or dark conditions. The controllable NO release of DPP-NF NPs can not only trigger tumor cell death by DNA damage, but also overcome PDT inefficiencies caused by hypoxia in tumors. Additionally, DPP-NF NPs displayed 45.6% photothermal conversion efficiency, making them superior to other reported DPP derivatives. In vitro studies showed that DPP-NF NPs possessed low dark toxicity and high phototoxicity with a half-maximal inhibitory concentration of about 38 µg mL-1. In vivo phototherapy indicated that DPP-NF NPs exhibited excellent tumor phototherapeutic efficacy with passive targeting of the tumor site via the enhanced permeability and retention (EPR) effect. These results highlight that the nano-platform has promising potential for NO-mediated multimodal synergistic phototherapy in clinical settings.

19.
ACS Appl Mater Interfaces ; 10(15): 12431-12440, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29564897

RESUMO

In preclinical and clinical research, to destroy cancers, particularly those located in deep tissues, is still a great challenge. Photodynamic therapy and photothermal therapy are promising alternative approaches for tissue cancer curing. Black phosphorus (BP)-based nanomaterials, with broad UV-vis near-infrared absorbance and excellent photothermal effect, have shown great potential in biomedical applications. Herein, a biocompatible therapeutic platform, chlorin e6 (Ce6)-decorated BP nanosheets (NSs), has been developed for fluorescence and thermal imaging-guided photothermal and photodynamic synergistic cancer treatment. Taking advantage of the relatively high surface area of exfoliated BP NSs, the PEG-NH2-modified BP NSs (BP@PEG) are loaded with a Ce6 photosensitizer. The resulted BP@PEG/Ce6 NSs not only have good biocompatibility, physiological stability, and tumor-targeting property but also exhibit enhanced photothermal conversion efficiency (43.6%) compared with BP@PEG NSs (28.7%). In addition, BP@PEG/Ce6 NSs could efficiently generate reactive oxygen species because of the release of the Ce6 photosensitizer, which is also verified by in vitro studies. In vivo fluorescence imaging suggests that BP@PEG/Ce6 NSs can accumulate in the tumor targetedly through the enhanced permeability and retention effect. Both in vitro and in vivo studies suggest that BP@PEG/Ce6 can be a promising nanotheranostic agent for synergetic photothermal/photodynamic cancer therapy.


Assuntos
Fósforo/química , Linhagem Celular Tumoral , Humanos , Nanoestruturas , Fotoquimioterapia , Fármacos Fotossensibilizantes
20.
Adv Healthc Mater ; 7(7): e1701272, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29334184

RESUMO

Synergistic cancer therapy is of great interest for multiple advantages, such as excellent targeting accuracy, low side effects, and enhanced therapeutic efficiency. Herein, a near-infrared photosensitizer aza-BODIPY (AB) with high singlet oxygen quantum yield (ΦΔ = 82%) is designed and synthesized. With Schiff's base obtained from condensation reaction between doxorubicin (DOX) and polyethylene glycol-benzaldehyde (PEG-CHO) as the polymer matrix, aza-BODIPY is encapsulated to afford hydrophilic nanoparticles (DAB NPs). The DAB NPs exhibit high reactive oxygen species (ROS) generation rate and outstanding photothermal conversion efficiency (η = 38.3%) under irradiation. In vivo fluorescence- and photothermal-imaging (PTI) results demonstrate that DAB NPs can specifically accumulate at tumor sites and serve as dual-modal imaging probe for cancer diagnosis. Particularly, triggered by acidic tumor microenvironment, the HCN bond of Schiff's base would be broken simultaneously, resulting in the efficient release of DOX from DAB NPs at tumor sites as well as enhancing the targeting performance of chemotherapeutics. Compared with free DOX and aza-BODIPY nanoparticles, DAB NPs can inhibit tumor growth more effectively through pH-responsive photodynamic/photothermal/chemo synergistic therapy. This report may also present a practicable strategy to develop a pH-responsive nanotheranostic agent for tumor targeting, imaging, and therapy.


Assuntos
Compostos de Boro , Hipertermia Induzida/métodos , Nanopartículas , Neoplasias Experimentais/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Animais , Compostos de Boro/química , Compostos de Boro/farmacocinética , Compostos de Boro/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA