Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 25369-25381, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199535

RESUMO

Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, its efficiency is hindered by three key parameters, namely, limited penetration depth of external light, tumor hypoxia, and self-aggregation of photosensitizers. Herein, we fabricated a novel "all-in-one" chemiluminescence-PDT nanosystem through the integration of an oxygen-supplying protein (hemoglobin, Hb) and a luminescent donor (luminol, Lum) in hierarchically engineered mesoporous porphyrinic metal-organic framework (MOF) nanoparticles. Mechanistically, the in situ chemiluminescence of Lum is activated by the high concentration of H2O2 in 4T1 cancer cells and further catalyzed by Hb and then absorbed by the porphyrin ligands in MOF nanoparticles through chemiluminescence resonance energy transfer. The excited porphyrins then sensitize oxygen supplied by Hb to produce sufficient reactive oxygen species that kill cancer cells. The MOF-based nanocomposite demonstrates excellent anticancer activity both in vitro and in vivo, with eventually a 68.1% tumor inhibition rate after intravenous injections without external light irradiation. This self-illuminating, oxygen-self-supplying nanosystem integrates all essential components of PDT into one simple nanoplatform, demonstrating great potential for the selective phototherapy of deep-seated cancer.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Estruturas Metalorgânicas/farmacologia , Luminescência , Peróxido de Hidrogênio , Microambiente Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico , Porfirinas/farmacologia , Linhagem Celular Tumoral
2.
Biomater Sci ; 10(21): 6267-6281, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36128848

RESUMO

Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform. The multifunctional nanoparticles with uniform size had high drug-loading payload, sustained release, as well as excellent photothermal conversion. The integrated nanoplatform showed a superior synergistic effect in vitro and possessed precise spatial delivery to HepG2 cells with the dual-targeting nanocarrier. Intriguingly, a robust anticancer response of chemo-phototherapy was achieved; chemotherapy combined with the efficacy of phototherapy to cause cellular apoptosis of HepG2 cells (>35%) and inhibit the regrowth of damaged cells. Furthermore, the theranostic nanosystem displayed fluorescence imaging in vivo, attributed to its splendid accumulation in the tumor site, and it provided exceptional tumor inhibition rate against liver cancer cells (>76%). Overall, our research presents a promising multifunctional theranostic nanoplatform for the development of synergistic therapeutics for tumors in further applications.


Assuntos
Dendrímeros , Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Verde de Indocianina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Molécula de Adesão da Célula Epitelial , Doxorrubicina/farmacologia , Preparações de Ação Retardada , Medicina de Precisão , Dissulfiram , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/terapia , Ácido Láctico , Hipertermia Induzida/métodos , Liberação Controlada de Fármacos , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral
3.
ACS Appl Mater Interfaces ; 12(51): 57362-57372, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33301289

RESUMO

The rapid development of CRISPR/Cas9 systems has opened up tantalizing prospects to sensitize cancers to chemotherapy using efficient targeted genome editing, but safety concerns and possible off-target effects of viral vectors remain a major obstacle for clinical application. Thus, the construction of novel nonviral tumor-targeting nanodelivery systems has great potential for the safe application of CRISPR/Cas9 systems for gene-chemo-combination therapy. Here, we report a polyamidoamine-aptamer-coated hollow mesoporous silica nanoparticle for the co-delivery of sorafenib and CRISPR/Cas9. The core-shell nanoparticles had good stability, enabled ultrahigh drug loading, targeted delivery, and controlled-release of the gene-drug combination. The nanocomplex showed >60% EGFR-editing efficiency without off-target effects in all nine similar sites, regulating the EGFR-PI3K-Akt pathway to inhibit angiogenesis, and exhibited a synergistic effect on cell proliferation. Importantly, the co-delivery nanosystem achieved efficient EGFR gene therapy and caused 85% tumor inhibition in a mouse model. Furthermore, the nanocomplex showed high accumulation at the tumor site in vivo and exhibited good safety with no damage to major organs. Due to these properties, the nanocomplex provides a versatile delivery approach for efficient co-loading of gene-drug combinations, allowing for precise gene editing and synergistic inhibition of tumor growth without apparent side effects on normal tissues.


Assuntos
Sistemas CRISPR-Cas , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Dióxido de Silício/química , Sorafenibe/uso terapêutico , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/toxicidade , Proteína 9 Associada à CRISPR/genética , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Molécula de Adesão da Célula Epitelial/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Edição de Genes , Genes erbB-1 , Humanos , Camundongos , Nanopartículas/toxicidade , Poliaminas/química , Poliaminas/toxicidade , Porosidade , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/toxicidade
4.
Chin J Integr Med ; 19(7): 524-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23818205

RESUMO

OBJECTIVE: To investigate the expression of C-type natriuretic peptides (CNP) and natriuretic peptide receptor-B (NPR-B) receptor in diabetic rats renal cortex, and the regulation by Tongluo Recipe (TLR). METHODS: Sixty male SD rats were divided into 3 groups: the normal control group, diabetic model group and diabetic TLR group. Each group was further divided into two subgroups of ten in each, according to 4-week or 12-week observation period. Streptozotocin (STZ)-induced diabetic rats were treated with TLR (1.0 g·kg(-1)·d(-1)) for 4 and 12 weeks, respectively. (1) The essential information was collected for comparing renal mass, serum creatinine and 24 h urine albumen on each group was calculated. (2) CNP mRNA and NPR-B mRNA were detected by realtime-polymerase chain reaction (PCR) on rats renal cortex. (3) Concentration of CNP on renal cortex or serum were analyzed by enzyme-linked immunosorbent assay (ELISA). (4) Pathological evaluation and NPR-B immunostaining for renal tissue were also performed. RESULTS: (1) CNP and NPR-B mRNA levels were detected in each treated or untreated group, with slight elevated in untreated diabetes rats administrated with STZ after 4-week and CNP mRNA level remarkable elevated at 39.21 times higher than normal control group after 12 weeks, but NPR-B mRNA level showed a remarkably down-regulation at 98.07% after 12 weeks. CNP mRNA of TLR-treated group was also elevated after 12-week treatment, but less than untreated group. (2) Concentrations of CNP in renal cortex were obviously increased in treated or untreated diabetes rats, within these groups the treatment of TLR was found more significantly on prompting CNP concentration. Comparing to normal group, serum concentrations of CNP were also increased in treated or untreated diabetic groups, but there was no difference between these diabetic groups. (3) Renal lesions like glomerular volume increased are observed mostly in the relative early stage after 4 weeks. Although TLR treated group had no significant difference in their glomerular volume, the degrees of injury of glomerulus were ameliorated, as well as the NPR-B immunostaining enhanced in glomerulus. Weakly positive immunostaining of NPR-B are observed in glomerulus of normal control, and negative in glomerulus of untreated diabetes rats administrated with STZ after 12 weeks, whereas TLR-treatment groups showed a little enhancement. CONCLUSION: CNP and NPR-B showed different characteristic on renal cortex at different pathological period in diabetes rats, and TLR regulated their expression.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Peptídeo Natriurético Tipo C/genética , Receptores do Fator Natriurético Atrial/genética , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hematúria/complicações , Hematúria/genética , Hematúria/patologia , Imuno-Histoquímica , Rim/efeitos dos fármacos , Rim/patologia , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Córtex Renal/patologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Peptídeo Natriurético Tipo C/metabolismo , Tamanho do Órgão/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores do Fator Natriurético Atrial/metabolismo , Coloração e Rotulagem , Estreptozocina
5.
Chin Med J (Engl) ; 125(20): 3675-80, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23075723

RESUMO

BACKGROUND: Oxidative stress has been implicated in the onset and progression of diabetes. Tongxinluo is a traditional Chinese medicine with potent antioxidant properties. The aim of this study was to test the hypothesis that pretreatment with Tongxinluo has similar effects as melatonin on preventing hyperglycemia and beta-cell damage in a rat model of streptozotocin (STZ)-induced diabetes. METHODS: Forty male Sprague Dawley rats were randomly assigned to four groups (n = 10 each): normal control (NC) group; STZ group (70 mg/kg, i.p.); Tongxinluo (1.0 g×kg(-1)×d(-1)) pretreated (TXL + STZ) group and melatonin (200 µg×kg(-1)×d(-1)) pretreated (MLT + STZ) group. Tongxinluo and melatonin were administered by gavage beginning 8 days before STZ injection and continuing until the end of the study (15 days after STZ administration). Blood glucose levels and body weights, malondialdehyde (MDA), and reduced glutathione (GSH) levels were measured, and immunofluorescence studies were performed in all of the groups. RESULTS: Pretreatment with Tongxinluo, as with melatonin, attenuated severe hyperglycemia and weight loss induced by STZ. In pancreatic homogenates, MDA levels were significantly lower and GSH levels were significantly higher in Tongxinluo pretreated group and in melatonin pretreated group than those in STZ group. Values of insulin staining were significantly improved in Tongxinluo pretreated group and in melatonin pretreated group as compared with those in STZ group. CONCLUSIONS: Tongxinluo, as melatonin, prevented hyperglycemia and beta-cell destruction induced by STZ in rats through reducing oxidative stress in pancreatic tissues. Tongxinluo may provide an alternative therapy for the prevention and treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hiperglicemia/tratamento farmacológico , Animais , Glicemia/análise , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Imunofluorescência , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Estreptozocina
6.
Plant Physiol ; 148(3): 1201-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18775970

RESUMO

Pollen germination, along with pollen tube growth, is an essential process for the reproduction of flowering plants. The germinating pollen with tip-growth characteristics provides an ideal model system for the study of cell growth and morphogenesis. As an essential step toward a detailed understanding of this important process, the objective of this study was to comprehensively analyze the transcriptome changes during pollen germination and pollen tube growth. Using Affymetrix Arabidopsis (Arabidopsis thaliana) ATH1 Genome Arrays, this study is, to our knowledge, the first to show the changes in the transcriptome from desiccated mature pollen grains to hydrated pollen grains and then to pollen tubes of Arabidopsis. The number of expressed genes, either for total expressed genes or for specifically expressed genes, increased significantly from desiccated mature pollen to hydrated pollen and again to growing pollen tubes, which is consistent with the finding that pollen germination and tube growth were significantly inhibited in vitro by a transcriptional inhibitor. The results of Gene Ontology analyses showed that expression of genes related to cell rescue, transcription, signal transduction, and cellular transport was significantly changed, especially for up-regulation, during pollen germination and tube growth. In particular, genes of the calmodulin/calmodulin-like protein, cation/hydrogen exchanger, and heat shock protein families showed the most significant changes during pollen germination and tube growth. These results demonstrate that the overall transcription of genes, both in the number of expressed genes and in the levels of transcription, was increased. Furthermore, the appearance of many novel transcripts during pollen germination as well as tube growth indicates that these newly expressed genes may function in this complex process.


Assuntos
Arabidopsis/genética , Expressão Gênica , Germinação , Pólen/metabolismo , RNA Mensageiro/genética , Arabidopsis/crescimento & desenvolvimento , Dactinomicina/farmacologia , Genes de Plantas , Reação em Cadeia da Polimerase , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA