Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(7): 1571-1587, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279012

RESUMO

Dragon's Blood (DB) serves as a precious Chinese medicine facilitating blood circulation and stasis dispersion. Daemonorops draco (D. draco; Qi-Lin-Jie) and Dracaena cochinchinensis (D. cochinchinenesis; Long-Xue-Jie) are two reputable plant sources for preparing DB. This work was designed to comprehensively characterize and compare the metabolome differences between D. draco and D. cochinchinenesis, by integrating liquid chromatography/mass spectrometry and untargeted metabolomics analysis. Offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), by utilizing a powerful hybrid scan approach, was elaborated for multicomponent characterization. Configuration of an XBridge Amide column and an HSS T3 column in offline mode exhibited high orthogonality (A0 0.80) in separating the complex components in DB. Particularly, the hybrid high-definition MSE-high definition data-dependent acquisition (HDMSE-HDDDA) in both positive and negative ion modes was applied for data acquisition. Streamlined intelligent data processing facilitated by the UNIFI™ (Waters) bioinformatics platform and searching against an in-house chemical library (recording 223 known compounds) enabled efficient structural elucidation. We could characterize 285 components, including 143 from D. draco and 174 from D. cochinchinensis. Holistic comparison of the metabolomes among 21 batches of DB samples by the untargeted metabolomics workflows unveiled 43 significantly differential components. Separately, four and three components were considered as the marker compounds for identifying D. draco and D. cochinchinenesis, respectively. Conclusively, the chemical composition and metabolomic differences of two DB resources were investigated by a dimension-enhanced analytical approach, with the results being beneficial to quality control and the differentiated clinical application of DB.


Assuntos
Quimiometria , Metaboloma , Extratos Vegetais , Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos
2.
J Chromatogr A ; 1708: 464344, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703763

RESUMO

For quality control of Chinese patent medicines (CPMs) containing the same herbal medicine or different herbal medicines that have similar chemical composition, current ″one standard for one species″ research mode leads to poor universality of the analytical approaches unfavorable to discriminate easily confused species. Herein, we were aimed to elaborate a multiple heart-cutting two-dimensional liquid chromatography/charged aerosol detector (MHC-2DLC/CAD) approach to quantitatively assess ginseng from multiple CPMs. Targeting baseline resolution of 16 ginsenosides (noto-R1/Rg1/Re/Rf/Ra2/Rb1/Rc/Ro/Rb2/Rb3/Rd/Rh1/Rg2/Rg3/Rg3(R)/24(R)-p-F11), experiments were conducted to optimize key parameters and validate its performance. A Poroshell 120 EC-C18 column and an XBridge Shield RP18 column were separately utilized in the first-dimensional (1D) and the second-dimensional (2D) chromatography. Eight consecutive cuttings could achieve good separation of 16 ginsenosides within 85 min. The developed MHC-2DLC/CAD method showed good linearity (R2 > 0.999), repeatability (RSD < 6.73%), stability (RSD < 5.63%), inter- and intra-day precision (RSD < 5.57%), recovery (93.76-111.14%), and the limit of detection (LOD) and limit of quantification (LOQ) varied between 0.45-2.37 ng and 0.96-4.71 ng, respectively. We applied it to the content determination of 16 ginsenosides simultaneously from 28 different ginseng-containing CPMs, which unveiled the ginsenoside content difference among the tested CPMs, and gave useful information to discriminate ginseng in the preparation samples, as well. The MHC-2DLC/CAD approach exhibited advantages of high specificity, good separation ability, and relative high analysis efficiency, which also justified the feasibility of our proposed ″Monomethod Characterization of Structure Analogs″ strategy in quality evaluation of diverse CPMs that contained different ginseng.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax , Aerossóis , Cromatografia Líquida , Medicamentos sem Prescrição
3.
J Chromatogr A ; 1706: 464243, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37567002

RESUMO

To accurately identify the metabolites is crucial in a number of research fields, and discovery of new compounds from the natural products can benefit the development of new drugs. However, the preferable phytochemistry or liquid chromatography/mass spectrometry approach is time-/labor-extensive or receives unconvincing identifications. Herein, we presented a strategy, by integrating offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), exclusion list-containing high-definition data-dependent acquisition (HDDDA-EL), and quantitative structure-retention relationship (QSRR) prediction of the retention time (tR), to facilitate the in-depth and more reliable identification of herbal components and thus to discover new compounds more efficiently. Using the saponins in Panax quinquefolius flower (PQF) as a case, high orthogonality (0.79) in separating ginsenosides was enabled by configuring the XBridge Amide and CSH C18 columns. HDDDA-EL could improve the coverage in MS2 acquisition by 2.26 folds compared with HDDDA (2933 VS 1298). Utilizing 106 reference compounds, an accurate QSRR prediction model (R2 = 0.9985 for the training set and R2 = 0.88 for the validation set) was developed based on Gradient Boosting Machine (GBM), by which the predicted tR matching could significantly reduce the isomeric candidates identification for unknown ginsenosides. Isolation and establishment of the structures of two malonylginsenosides by NMR partially verified the practicability of the integral strategy. By these efforts, 421 ginsenosides were identified or tentatively characterized, and 284 thereof were not ever reported from the Panax species. The current strategy is thus powerful in the comprehensive metabolites characterization and rapid discovery of new compounds from the natural products.


Assuntos
Produtos Biológicos , Ginsenosídeos , Panax , Ginsenosídeos/análise , Panax/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida , Flores/química , Produtos Biológicos/análise
4.
J Agric Food Chem ; 71(24): 9391-9403, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294034

RESUMO

Ginseng extracts are extensively used as raw materials for food supplements and herbal medicines. This study aimed to characterize ginsenosides obtained from six Panax plant extracts (Panax ginseng, red ginseng, Panax quinquefolius, Panax notoginseng, Panax japonicus, and Panax japonicus var. major) and compared them with their in vitro metabolic profiles mediated by rat intestinal microbiota. Ultrahigh-performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) with scheduled multiple reaction monitoring (sMRM) quantitation methods were developed to characterize and compare the ginsenoside composition of the different extracts. After in vitro incubation, 248 ginsenosides/metabolites were identified by UHPLC/IM-QTOF-MS in six biotransformed samples. Deglycosylation was determined to be the main metabolic pathway of ginsenosides, and protopanaxadiol-type and oleanolic acid-type saponins were easier to be easily metabolized. Compared with the ginsenosides in plant extracts, those remaining in six biotransformed samples were considerably fewer after biotransformation for 8 h. However, the compositional differences in four subtypes of the ginsenosides among the six Panax plants became more distinct.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Panax notoginseng , Ratos , Animais , Ginsenosídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida , Panax notoginseng/química , Extratos Vegetais/química
5.
Fitoterapia ; 151: 104879, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33689876

RESUMO

Swertia mileensis, known as Qing-Ye-Dan (QYD), has been documented in Chinese Pharmacopoeia to cure hepatitis. Interestingly, its announced main active component, swertiamarin, could not be detected in the decoction, which indicated that the efficacy of QYD might be attributed to heat-transformed products of swertiamarin (HTPS). Further investigation on HTPS led to the isolation of sweritranslactone D (1), a novel secoiridoid dimer possessing a tetracyclic lactone skeleton, with better hepatoprotective activity than N-acetyl-L-cysteine in vitro.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Temperatura Alta , Glucosídeos Iridoides/química , Lactonas/química , Substâncias Protetoras/farmacologia , Pironas/química , Animais , Linhagem Celular , Medicamentos de Ervas Chinesas , Humanos , Camundongos , Estrutura Molecular , Substâncias Protetoras/isolamento & purificação , Swertia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA