Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 99(3): 383-402, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33409554

RESUMO

Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: • Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. • New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. • Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Priônicas/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Pirazinas/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Eletrorretinografia , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Jejum , Feminino , Glucose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Priônicas/química , Agregação Patológica de Proteínas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/fisiopatologia , Método Simples-Cego , Solubilidade , Organismos Livres de Patógenos Específicos , Transcrição Gênica/efeitos dos fármacos
2.
Angew Chem Int Ed Engl ; 57(1): 177-181, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29125675

RESUMO

Photothermal therapy (PTT) has been extensively developed as an effective approach against cancer. However, PTT can trigger inflammatory responses, in turn simulating tumor regeneration and hindering subsequent therapy. A therapeutic strategy was developed to deliver enhanced PTT and simultaneously inhibit PTT-induced inflammatory response. 1-Pyrene methanol was utilize to synthesize the anti-inflammatory prodrug pyrene-aspirin (P-aspirin) with a cleavable ester bond and also facilitate loading the prodrug on gold nanorod (AuNR)-encapsulated graphitic nanocapsule (AuNR@G), a photothermal agent, through π-π interactions. Such AuNR@G-P-aspirin complexes were used for near-infrared laser-triggered photothermal ablation of solid tumor and simultaneous inhibition of PTT-induced inflammation through the release of aspirin in tumor milieu. This strategy showed excellent effects in vitro and in vivo.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aspirina/administração & dosagem , Ouro/química , Grafite/química , Hipertermia Induzida , Nanocápsulas/química , Nanotubos/química , Neoplasias Experimentais/terapia , Fototerapia , Pró-Fármacos/administração & dosagem , Pirenos/administração & dosagem , Animais , Terapia Combinada , Células HeLa , Humanos , Interleucina-6/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Neoplasias Experimentais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Nanoscale ; 9(30): 10529-10543, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28715021

RESUMO

Graphitic nanocapsules are emerging nanomaterials which are gaining popularity along with the development of carbon nanomaterials. Their unique physical and chemical properties, as well as good biocompatibility, make them desirable agents for biomedical and bioanalytical applications. Through rational design, integrating graphitic nanocapsules with other materials provides them with additional properties which make them versatile nanoplatforms for bioanalysis. In this feature article, we present the use and performance of graphitic nanocapsules in a variety of bioanalytical applications. Based on their chemical properties, the specific merits and limitations of magnetic, hollow, and noble metal encapsulated graphitic nanocapsules are discussed. Detection, multi-modal imaging, and therapeutic applications are included. Future directions and potential solutions for further biomedical applications are also suggested.


Assuntos
Grafite/química , Nanocápsulas/química , Técnicas Biossensoriais , Carbono , DNA/análise , Portadores de Fármacos , Magnetismo , Imagem Multimodal , Fototerapia
4.
Nanoscale ; 8(15): 7942-8, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004915

RESUMO

Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Hipertermia Induzida/métodos , Nanocápsulas/química , Antineoplásicos/administração & dosagem , Aptâmeros de Nucleotídeos , Carbono , Doxorrubicina/administração & dosagem , Ouro , Células HEK293 , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanotubos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA