Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 150: 112926, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35427819

RESUMO

Nowadays, about 30% of magnetic resonance imaging (MRI) exams need contrast agents (CAs) to improve the sensitivity and quality of the images for accurate diagnosis. Here, a multifunctional nano-agent with ring-like vortex-domain iron oxide as core and gadolinium oxide as shell (vortex nanoring Fe3O4 @Gd2O3, abbreviated as VNFG) was firstly designed and prepared for highly enhanced T1-T2 dual-modality magnetic resonance imaging (MRI)-guided magnetic thermal cancer therapy. After thorough characterization, the core-shell structure of VNFG was confirmed. Moreover, the excellent heat generation property (SAR=984.26 W/g) of the proposed VNFG under alternating magnetic fields was firmly demonstrated. Furthermore, both in vitro and in vivo studies have revealed a good preliminary indication of VNFG's biological compatibility, dual-modality enhancing feature and antitumor efficacy. This work demonstrates that the proposed VNFG can be a high-performance tumor diagnosis and theranostic treatment agent and may have great potential for clinical application in the future.


Assuntos
Hipertermia Induzida , Neoplasias , Meios de Contraste/química , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanomedicina Teranóstica/métodos
2.
Int J Nanomedicine ; 15: 7687-7702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116495

RESUMO

BACKGROUND: Recent studies have validated and confirmed the great potential of nanoscale metal-organic framework (NMOF) in the biomedical field, especially in improving the efficiency of cancer diagnosis and therapy. However, most previous studies only utilized either the metal cluster or the organic ligand of the NMOF for cancer treatments and merely reported limited theranostic functions, which may not be optimized. As a highly designable and easily functionalized material, prospective rational design offers a powerful way to extract the maximum benefit from NMOF for cancer theranostic applications. MATERIALS AND METHODS: A NMOF based on hafnium (Hf) cluster and Mn(III)-porphyrin ligand was rational designed and synthesized as a high-performance multifunctional theranostic agent. The folic acid (FA) was modified on the NMOF surface to enhance the cancer targeting efficacy. The proposed "all-in-one" FA-Hf-Mn-NMOF (fHMNM) was characterized and identified using various analytical techniques. Then, in vitro and in vivo studies were performed to further explore the effects of fHMNM both as the magnetic resonance imaging (MRI)/computed tomography (CT)/photoacoustic imaging (PAI) contrast agent and as the photothermal therapy (PTT)/radiotherapy (RT) agent. RESULTS: A tumour targeting multifunctional fHMNM was successfully synthesized with high performance for MRI/CT/PAI enhancements and image-guided PTT/RT synergistic therapy properties. Compared with the current clinical CT and MR contrast agents, the X-ray attenuation and T1 relaxation rate of this integrated nanosystem increased 1.7-fold and 3-5-fold, respectively. More importantly, the catalase-like Mn(III)-porphyrin ligand can decompose H2O2 into O2 in tumour microenvironments to improve the synergistic treatment efficiency of PTT and RT. Significant tumour growth inhibition was achieved in mouse cancer models without obvious damage to the other organs. CONCLUSION: This work highlights the potential of fHMNM as an easily designable material for biomedical applications, could be an effective tool for in vivo detection and subsequent treatment of tumour.


Assuntos
Háfnio/química , Hipertermia Induzida , Estruturas Metalorgânicas/química , Metaloporfirinas/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fototerapia , Animais , Meios de Contraste/química , Fluorescência , Ácido Fólico/uso terapêutico , Células HeLa , Humanos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Neoplasias/radioterapia , Técnicas Fotoacústicas , Radioterapia Guiada por Imagem
3.
Biotechnol Lett ; 40(9-10): 1271-1287, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29968134

RESUMO

Gram-negative bacilli such as Pseudomonas spp., Pseudoalteromonas sp., Angiococcus sp., Archangium sp., Burkholderia spp., Chromobacterium sp., Chondromyces sp., Cystobacter sp., Jahnella sp., Janthinobacterium sp., Lysobacter spp., Paraliomyxa sp., Photobacterium spp., Photorhabdus sp., Pontibacter sp., Ruegeria sp., Serratia sp., Sorangium sp., Sphingomonas sp., and Xenorhabdus spp. produce an enormous array of short peptides of 30 residues or fewer that are potential pharmaceutical drugs and/or biocontrol agents. The need for novel lead antibiotic compounds is urgent due to increasing drug resistance, and this review summarises 150 Gram-negative bacilli-derived compounds reported since 2000, including 40 cyclic lipopeptides from Pseudomonas spp.; nine aromatic peptides; eight glycopeptides; 45 different cyclic lipopeptides; 24 linear lipopeptides; eight thiopeptides; one lasso peptide; ten typical cyclic peptides; and five standard linear peptides. The current and potential therapeutic applications of these peptides, including structures and antituberculotic, anti-cyanobacterial, antifungal, antibacterial, antiviral, insecticidal, and antiprotozoal activities are discussed.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Bactérias Gram-Negativas/química , Peptídeos/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Bactérias Gram-Negativas/metabolismo , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
4.
Theranostics ; 8(4): 1042-1058, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29463998

RESUMO

Heavy atom nanoparticles have high X-ray absorption capacity and near infrared (NIR) photothermal conversion efficiency, which could be used as radio-sensitizers. We hypothesized that concave PtCu octopod nanoframes (OPCNs) would be an efficient nanoplatform for synergistic radio-photothermal tumor ablation. Methods: In this study, we newly exploited a folic acid-receptor (FR) mediated photothermal radiotherapy nanoagent base on OPCNs. OPCNs were synthesized with a hydrothermal method and then modified with polyethylene glycol (PEG) and folic acid (FA). A series of physical and chemical characterizations, cytotoxicity, targeting potential, endocytosis mechanism, biodistribution, systematic toxicological evaluation, pharmacokinetics, applications of OPCNs-PEG-FA for in vitro and in vivo infrared thermal imaging (ITI)/photoacoustic imaging (PAI) dual-modal imaging and synergistic photothermal radiotherapy against tumor were carried out. Results: The OPCNs-PEG-FA demonstrated good biocompatibility, strong NIR absorption and X-ray radio-sensitization, which enabling it to track and visualize tumor in vivo via ITI/PAI dual-modal imaging. Moreover, the as-synthesized OPCNs-PEG-FA exhibited remarkable photothermal therapy (PTT) and radiotherapy (RT) synergistic tumor inhibition when treated with NIR laser and X-ray. Conclusion: A novel multifunctional theranostic nanoplatform based on OPCNs was designed and developed for dual-modal image-guided synergistic tumor photothermal radiotherapy.


Assuntos
Diagnóstico por Imagem/métodos , Hipertermia Induzida/métodos , Nanocompostos/administração & dosagem , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fotoquimioterapia/métodos , Radioterapia Guiada por Imagem/métodos , Linhagem Celular Tumoral , Ácido Fólico/metabolismo , Humanos , Modelos Biológicos , Nanocompostos/química , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/métodos , Termometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA