Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Acta Pharm Sin B ; 13(3): 1164-1179, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970196

RESUMO

Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.

3.
Front Pharmacol ; 13: 1033919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386126

RESUMO

Overview: In treating pulmonary fibrosis (PF), traditional Chinese medicine (TCM) has received much attention, but its mechanism is unclear. The pharmacological mechanisms of TCM can be explored through network pharmacology. However, due to its virtual screening properties, it still needs to be verified by in vitro or in vivo experiments. Therefore, we investigated the anti-PF mechanism of Yiqi Huayu Decoction (YHD) by combining network pharmacology with in vivo experiments. Methods: Firstly, we used classical bleomycin (BLM)-induced rat model of PF and administrated fibrotic rats with YHD (low-, medium-, and high-dose). We comprehensively assessed the treatment effect of YHD according to body weight, lung coefficient, lung function, and histopathologic examination. Second, we predict the potential targets by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) combined with network pharmacology. In brief, we obtained the chemical ingredients of YHD based on the UHPLC-MS/MS and TCMSP database. We collected drug targets from TCMSP, HERB, and Swiss target prediction databases based on active ingredients. Disease targets were acquired from drug libraries, Genecards, HERB, and TTD databases. The intersecting targets of drugs and disease were screened out. The STRING database can obtain protein-protein interaction (PPI) networks and hub target proteins. Molecular Complex Detection (MCODE) clustering analysis combined with enrichment analysis can explore the possible biological mechanisms of YHD. Enrichment analyses were conducted through the R package and the David database, including the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Reactome. Then, we further validated the target genes and target proteins predicted by network pharmacology. Protein and gene expression detection by immunohistochemistry, Western blot (WB), and real-time quantitative PCR (rt-qPCR). Results: The results showed that high-dose YHD effectively attenuated BLM-induced lung injury and fibrosis in rats, as evidenced by improved lung function, relief of inflammatory response, and reduced collagen deposition. We screened nine core targets and cellular senescence pathways by UHPLC-MS/MS analysis and network pharmacology. We subsequently validated key targets of cellular senescence signaling pathways. WB and rt-qPCR indicated that high-dose YHD decreased protein and gene expression of senescence-related markers, including p53 (TP53), p21 (CDKN1A), and p16 (CDKN2A). Increased reactive oxygen species (ROS) are upstream triggers of the senescence program. The senescence-associated secretory phenotypes (SASPs), containing interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-ß1 (TGF-ß1), can further exacerbate the progression of senescence. High-dose YHD inhibited ROS production in lung tissue and consistently reduced the SASPs expression in serum. Conclusion: Our study suggests that YHD improves lung pathological injury and lung function in PF rats. This protective effect may be related to the ability of YHD to inhibit cellular senescence.

4.
Front Pharmacol ; 13: 917329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847050

RESUMO

Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic fibrosis and even hepatocellular carcinoma, is a liver disease worldwide without approved therapeutic drugs. Baicalein (BAL), a flavonoid compound extracted from the Traditional Chinese Medicine (TCM) Scutellariae Radix (Scutellaria baicalensis Georgi.), has been used in TCM clinical practice for thousands of years to treat liver diseases due to its "hepatoprotective effect". However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that oral administration of BAL significantly decreased excess serum levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) as well as hepatic TG in fructose-fed rats. Attenuation of the increased vacuolization and Oil Red O staining area was evident on hepatic histological examination in BAL-treated rats. Mechanistically, results of RNA-sequencing, western-blot, real-time quantitative PCR (RT-qPCR) and hepatic metabolomics analyses indicated that BAL decreased fructose-induced excessive nuclear expressions of mature sterol regulatory element-binding protein 1c (mSREBP1c) and carbohydrate response element-binding protein (ChREBP), which led to the decline of lipogenic molecules [including fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), elongation of very long chain fatty acids 6 (ELOVL6), acetyl-CoA carboxylase (ACC)], accompanying with the alternation of hepatic fatty acids composition. Meanwhile, BAL enhanced fatty acid oxidation by activating AMPK/PGC1α signaling axis and PPARα signal pathway, which elicited high expression of carnitine palmitoyl transferase 1α (CPT1α) and Acyl-CoA oxidase 1 (ACO1) in livers of fructose-fed rats, respectively. BAL ameliorated fructose-induced hepatic steatosis, which is associated with regulating fatty acid synthesis, elongation and oxidation.

5.
Comput Biol Med ; 148: 105790, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35839542

RESUMO

BACKGROUND: The modified Guishen pill (MGP) has a prominent therapeutic effect on polycystic ovary syndrome (PCOS). However, its mechanism is still unclear. This study aimed to uncover the mechanism of MGP for PCOS treatment through a comprehensive strategy integrating metabolomics and network pharmacology. METHODS: A letrozole-induced PCOS model was used to evaluate ovarian function in rats. Plasma metabolomics was used to authenticate differential metabolites and enriched related pathways using the MetaboAnalyst platform. Network pharmacology was utilized to explore the endogenous targets of MGP treatment for PCOS. Finally, the potential targets and related biological functions were verified experimentally. RESULTS: MGP improved PCOS symptoms by regulating abnormal levels of sex hormones and alleviating ovarian pathological changes in rats; fifty-four potential differential metabolites involved in MGP treatment for PCOS, and the hub genes derived from network pharmacology were consistent with the metabolomic analysis results to varying degrees. The comprehensive analysis identified that a key novel target for endothelial nitric oxide synthase (eNOS/NOS3), five key metabolites (ornithine, citrulline, l-glutamic acid, acetylornithine, and hydroxyproline), and one pathway (arginine and proline metabolism) were related to the therapy of PCOS with MGP. Subsequently, we verified the localization and expression of eNOS in the ovaries, and it significantly improved insulin resistance, apoptosis, and oxidative stress in letrozole-induced PCOS rats. CONCLUSION: Our work reveals the complex mechanism of MGP therapy for PCOS. This study is a successful paradigm for elucidating the pharmacological mechanism of the traditional Chinese medicine compound.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Letrozol , Metabolômica , Farmacologia em Rede , Ratos
6.
Arch Biochem Biophys ; 722: 109236, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429444

RESUMO

Baicalin is a flavonoid compound abundant in multiple edible and medicinal plants such as Scutellaria baicalensis Georgi. In this study, we provide evidence to support the fact that baicalin ameliorates alcohol-induced hepatic steatosis via regulating SREBP1c elicited PNPLA3 competitive binding to ATGL. Results showed that baicalin significantly attenuated the development of metabolic disorders and hepatic steatosis in alcohol-induced rats after four weeks of treatment. It was evident that baicalin treatment significantly normalized the serous contents of hepatic triglyceride (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and attenuated the increase of hepatic vacuolization and Oil Red O staining area caused by alcohol. Meanwhile, baicalin relieves alcohol-induced hepatic fibrosis by masson staining and RT-qPCR analysis. Mechanistically, alcohol aggravated the nuclear expression of SREBP1c, which contributed to the high expression of PNPLA3 and FASN, thereby enhancing the binding of PNPLA3 to ABHD5, and indirectly impairing the binding ability between ATGL and ABHD5, ultimately causing a decline in the hydrolysis capacity in liver lipid droplets. As expected, these alcohol-induced pathobolism were reversed by baicalin treatment both in vivo and in vitro. In conclusion, this study has demonstrated that baicalin can protect against alcohol-induced hepatic lipid accumulation by activating hepatic lipolysis via suppressing SREBP1c elicited PNPLA3 competitive binding to ATGL. Baicalin is a promising natural product for preventing alcohol-induced hepatic steatosis.


Assuntos
Fígado Gorduroso Alcoólico , Animais , Ligação Competitiva , Etanol/metabolismo , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fígado/metabolismo , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
7.
BMC Complement Med Ther ; 20(1): 39, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033545

RESUMO

BACKGROUND: Stroke is a major cause of death and disability worldwide. Over the years, traditional medicines for stroke treatment have undergone tremendous progress, but few bibliometric studies have been performed. This study explored the trends and issues relating to the application of traditional medicine in stroke research. METHODS: A bibliometric search was performed in the Web of Science Core Collection database to identify studies that investigated the application of traditional medicine in stroke management. CiteSpace VI and Excel 2016 were used to analyze information from the retrieved studies. Activity index and attractive index were used to explore the worldwide development modes. RESULTS: A total of 1083 English articles published between 2004 and 2018 were identified. Over the last 15 years, the developments in research occurred in three geographic clusters. The development modes were investigated and classified into 4 categories. In mainland China, the number and impact of research showed an increasing trend over the study period. The United States played a leading role in this topic. Three clusters of institutes and the majority of authors mainly came from South Korea, Taiwan and mainland China. Reperfusion injury and angiogenesis were identified as the potential topics likely to dominate future research in this field. CONCLUSION: The progress of studies on traditional medicine for stroke could be explained by the global attention to traditional medicine, the geospatial proximity for research collabration, and the increasing resources invested. Based on a large amount of existing research, researchers engaged in this topic should objectively consider the influential studies to identify and solve the common issues worldwide.


Assuntos
Bibliometria , Medicina Tradicional/métodos , Publicações/tendências , Projetos de Pesquisa , Acidente Vascular Cerebral/terapia , China , Humanos , República da Coreia , Taiwan , Estados Unidos
8.
Biomed Pharmacother ; 120: 109483, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31629252

RESUMO

Lung cancer is the leading cause of cancer-related deaths. Ginsenoside Rg3 is the main ingredient of Ginseng which is used to treat non-small cell lung cancer (NSCLC). It has been found to enhance the efficiency of chemotherapy thereby reducing its side effects. Previous studies found that ginsenoside Rg3 can reduce the occurrence of NSCLC by inducing DNA damage. Yet, its anti-DNA damaging effects and mechanisms in tumor cells are still not fully understood. This study explored the effect of ginsenoside Rg3 on DNA repair and VRK1/P53BP1 signaling pathway. Ginsenoside Rg3 treatment significantly decreased the incidence and invasionin a mouse model of lung cancer induced by urethane. The results of cell survival assay and single cell gel electrophoresis showed that ginsenoside Rg3 protected lung adenocarcinoma cells from DNA damage as well as inhibited the proliferation of tumor cells. Ginsenoside Rg3 increased the mRNA and protein expression of VRK1 in NSCLC cells as measured by RT-qPCR and western blot, respectively. These findings suggests that ginsenoside Rg3 regulates VRK1 signaling. Immunofluorescence assays showed that P53BP1 and VRK1 protein level increased, and the VRK1 protein translocated between the nuclei and cytoplasm. Finally, this conclusion was confirmed by the reverse validation in VRK1-knockdown cells. Taken together, these results show that ginsenoside Rg3 upregulate VRK1 expression and P53BP1 foci formation in response to DNA damage thereby inhibiting the tumorigenesis and viability of cancer cells. These findings reveal the role of Rg3 in lung cancer and provides therapeutic targets for developing new drugs in the prevention and treatment of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Ginsenosídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Células A549 , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Panax/química , RNA Mensageiro/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Curr Drug Targets ; 20(15): 1505-1516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31376819

RESUMO

Protein kinases play critical roles in the control of cell growth, proliferation, migration, and angiogenesis, through their catalytic activity. Over the past years, numerous protein kinase inhibitors have been identified and are being successfully used clinically. Traditional Chinese medicine (TCM) represents a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases signal pathway. Some of the TCM have been used to treat tumors clinically in China for many years. The p38mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase, serine/threonine-specific protein kinases (PI3K/AKT/mTOR), and extracellular signal-regulated kinases (ERK) pathways are considered important signals in cancer cell development. In the present article, the recent progress of TCM that exhibited significant inhibitory activity towards a range of protein kinases is discussed. The clinical efficacy of TCM with inhibitory effects on protein kinases in treating a tumor is also presented. The article also discussed the prospects and problems in the development of anticancer agents with TCM.


Assuntos
Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos , Medicina Tradicional Chinesa/métodos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA