Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 852: 158194, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995167

RESUMO

The fungicide folpet is rapidly degraded into phthalimide (PI) during both thermal processing and analytical procedures in sample preparation; thus, its residue definition has been modified into the sum of itself and PI. Tea is one of the world's most popular nonalcoholic beverages, where folpet is not listed as an applicable pesticide. To demonstrate how serious false-positives and overestimation in dietary risk are caused by the application of a new residue definition, the residue pattern of PI in made tea and processed tea leaves, along with its transfer rate during tea brewing and corresponding dietary risk, were investigated in the present study. The results revealed that PI residue in tea ranged from <10 µg/kg to 180 µg/kg with a median value of 10 µg/kg, 7.3 % of which was over the maximum residue limit established by EU (100 µg/kg, expressed as folpet). The PI residue in green tea was obviously higher than that in black, dark and oolong tea. Simulated heating experiments revealed that PI can arise from improper heating of folpet-free fresh tea leaves, and thus green tea bears a higher risk for its manufacturing employing a comparatively higher temperature. The transfer rate of PI during tea brewing was 104 ± 14 %. Nevertheless, the risk of PI through drinking tea was negligible to humans depending on the risk quotient (RQ) value, which was significantly lower than 1.


Assuntos
Camellia sinensis , Fungicidas Industriais , Humanos , Chá/química , Ftalimidas/análise , Camellia sinensis/química
2.
Front Microbiol ; 8: 920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638368

RESUMO

The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 µM facilitated MFC start-up compared to 150 µM, 200 µM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter, which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA