Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Adv Sci (Weinh) ; 11(20): e2307060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516744

RESUMO

Biodegradable nanomaterials can significantly improve the safety profile of nanomedicine. Germanium nanoparticles (Ge NPs) with a safe biodegradation pathway are developed as efficient photothermal converters for biomedical applications. Ge NPs synthesized by femtosecond-laser ablation in liquids rapidly dissolve in physiological-like environment through the oxidation mechanism. The biodegradation of Ge nanoparticles is preserved in tumor cells in vitro and in normal tissues in mice with a half-life as short as 3.5 days. Biocompatibility of Ge NPs is confirmed in vivo by hematological, biochemical, and histological analyses. Strong optical absorption of Ge in the near-infrared spectral range enables photothermal treatment of engrafted tumors in vivo, following intravenous injection of Ge NPs. The photothermal therapy results in a 3.9-fold reduction of the EMT6/P adenocarcinoma tumor growth with significant prolongation of the mice survival. Excellent mass-extinction of Ge NPs (7.9 L g-1 cm-1 at 808 nm) enables photoacoustic imaging of bones and tumors, following intravenous and intratumoral administrations of the nanomaterial. As such, strongly absorbing near-infrared-light biodegradable Ge nanomaterial holds promise for advanced theranostics.


Assuntos
Germânio , Técnicas Fotoacústicas , Fototerapia , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Germânio/química , Fototerapia/métodos , Modelos Animais de Doenças , Lasers , Nanopartículas/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Feminino
2.
Acta Biomater ; 166: 581-592, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172637

RESUMO

Prostate cancer (PCa) routinely employs magnetic resonance (MR) imaging, while metastatic PCa needs more complicated detection methods for precise localization. The inconvenience of using different methods to detect PCa and its metastases in patients and the limitations of single-mode imaging have brought great challenges to clinicians. Meanwhile, clinical treatments for metastatic PCa are still limited. Herein, we report a targeted theranostic platform of Au/Mn nanodots-luteinising hormone releasing hormone (AMNDs-LHRH) nano-system for multi-mode imaging guided photothermal therapy of PCa. The nano-system not only can simultaneously target Gonadotropin-Releasing Hormone Receptor (GnRH-R) positive PCa and its metastases for accurate preoperative CT/MR diagnosis, but also possesses fluorescence (FL) visualization navigated surgery, demonstrating its potential application in clinical cancer detection and surgery guidance. Meanwhile, the AMNDs-LHRH with promising targeting and photothermal conversion ability significantly improve the photothermal therapy effect of metastatic PCa. The AMNDs-LHRH nano-system guarantees the diagnostic accuracy and enhanced therapeutic effect, which provides a promising platform for clinical diagnosis and treatment of metastatic PCa. STATEMENT OF SIGNIFICANCE: Accurate clinical diagnosis and treatment of prostate cancer and its metastases is challenging. A targeted theranostic platform of AMNDs-LHRH nano-system for multi-mode imaging (FL/CT/MR) guided photothermal therapy of metastatic prostate cancer has been reported. The nano-system not only can simultaneously target prostate cancer and its metastases for accurate preoperative CT/MR diagnosis, but also possesses fluorescence visualization navigated surgery, demonstrating its potential application in clinical cancer detection and surgery guidance. The nano-system with great targeting and photothermal conversion ability significantly improve the photothermal therapy effect of metastatic prostate cancer. Overall, the AMNDs-LHRH nano-system integrates tumor targeting, multi-mode imaging and enhanced therapeutic effect, which can provide an effective strategy for the clinical diagnosis and treatment of metastatic PCa.


Assuntos
Terapia Fototérmica , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Fototerapia , Imageamento por Ressonância Magnética/métodos , Hormônio Liberador de Gonadotropina , Linhagem Celular Tumoral
3.
Int J Pharm ; 621: 121795, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35526695

RESUMO

The rapid elimination of systemically administered drug nanocarriers by the mononuclear phagocyte system (MPS) compromises nanomedicine delivery efficacy. To mitigate this problem, an approach to block the MPS has been introduced and implemented by intravenous pre-administering blocker nanoparticles. The required large doses of blocker nanoparticles appeared to burden the MPS, raising toxicity concerns. To alleviate the toxicity issues in MPS blockade, we propose an intrinsically biocompatible blocker, ferrihydrite - a metabolite ubiquitous in a biological organism. Ferrihydrite particles were synthesized to mimic endogenous ferritin-bound iron. Ferrihydrite surface coating with carboxymethyl-dextran was found to improve MPS blockade dramatically with a 9-fold prolongation of magnetic nanoparticle circulation in the bloodstream and a 24-fold increase in the tumor targeted delivery. The administration of high doses of ferrihydrite caused low toxicity with a rapid recovery of toxicological parameters after 3 days. We believe that ferrihydrite particles coated with carboxymethyl-dextran represent superior blocking biomaterial with enviable biocompatibility.


Assuntos
Nanopartículas , Neoplasias , Dextranos , Compostos Férricos , Humanos , Macrófagos , Neoplasias/tratamento farmacológico
5.
Photodiagnosis Photodyn Ther ; 32: 102064, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069874

RESUMO

BACKGROUND: Photoimmunotherapy (PIT) is an emerging method of cancer treatment based on the use of a photosensitizer near-infrared dye IRDye700DX (IR700) conjugated to a monoclonal antibody. The antibody selectively delivers IR700 to cancer cells, which can then be killed after photoexcitation. Glypican-1 (GPC-1) is a novel target expressed specifically in malignant tumors. We aimed to investigate whether anti-GPC-1 antibody Miltuximab® (Glytherix Ltd., Sydney, Australia) can be conjugated with IR700 for PIT of solid tumors. METHODS: The dye IR700 was conjugated with Miltuximab® and characterized by spectrophotometry and flow cytometry. Miltuximab®-IR700-mediated PIT was tested in prostate (DU-145), bladder (C3 and T-24), brain (U-87 and U-251) and ovarian (SKOV-3) cancer cell lines. After 1 h incubation with Miltuximab®-IR700, the cells were washed by PBS and illuminated using a 690-nm light-emitting diode. The viability of the cells was assessed by a CCK-8 viability kit 24 h later. RESULTS: Miltuximab®-IR700-mediated PIT caused 67.3-92.3% reduction in viability of cells with medium-high GPC-1 expression and did not affect the viability of GPC-1-low cells. Cytotoxicity was attributed to the targeted binding of the conjugate with subsequent photoactivation, as the conjugate or light exposure alone had no effect on the cell viability. Miltuximab®-IR700 did not induce cytotoxicity in cells blocked by unconjugated Miltuximab®. CONCLUSIONS: PIT with Miltuximab®-IR700 appears to be highly specific and effective against GPC-1-expressing cancer cells, indicating that it holds promise for an effective and safe treatment of early stage solid tumors or as adjuvant therapy following surgical resection. These findings necessitate further investigation of PIT with Miltuximab®-IR700 in other GPC-1-expressing cancer cell lines in vitro and in vivo in xenograft tumor models.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Linhagem Celular Tumoral , Estudos de Viabilidade , Imunoterapia , Masculino , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Toxicol Sci ; 170(1): 123-132, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985900

RESUMO

Upconversion nanoparticles (UCNPs) are new-generation photoluminescent nanomaterials gaining considerable recognition in the life sciences due to their unique optical properties that allow high-contrast imaging in cells and tissues. Upconversion nanoparticle applications in optical diagnosis, bioassays, therapeutics, photodynamic therapy, drug delivery, and light-controlled release of drugs are promising, demanding a comprehensive systematic study of their pharmacological properties. We report on production of biofunctional UCNP-based nanocomplexes suitable for optical microscopy and imaging of HER2-positive cells and tumors, as well as on the comprehensive evaluation of their pharmacokinetics, pharmacodynamics, and toxicological properties using cells and laboratory animals. The nanocomplexes represent a UCNP core/shell structure of the NaYF4:Yb, Er, Tm/NaYF4 composition coated with an amphiphilic alternating copolymer of maleic anhydride with 1-octadecene (PMAO) and conjugated to the Designed Ankyrin Repeat Protein (DARPin 9_29) with high affinity to the HER2 receptor. We demonstrated the specific binding of UCNP-PMAO-DARPin to HER2-positive cancer cells in cultures and xenograft animal models allowing the tumor visualization for at least 24 h. An exhaustive study of the general and specific toxicity of UCNP-PMAO-DARPin including the evaluation of their allergenic, immunotoxic, and reprotoxic properties was carried out. The obtained experimental body of evidence leads to a conclusion that UCNP-PMAO and UCNP-PMAO-DARPin are functional, noncytotoxic, biocompatible, and safe for imaging applications in cells, small animals, and prospective clinical applications of image-guided surgery.


Assuntos
Neoplasias Mamárias Experimentais/diagnóstico por imagem , Nanopartículas/química , Polímeros/química , Imagem Corporal Total/métodos , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Érbio/química , Escherichia coli/genética , Fluoretos/química , Humanos , Medições Luminescentes , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Polímeros/farmacocinética , Polímeros/toxicidade , Receptor ErbB-2/genética , Propriedades de Superfície , Túlio/química , Distribuição Tecidual , Ítrio/química
7.
ACS Appl Mater Interfaces ; 8(19): 11945-53, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27119593

RESUMO

The treatment depth of existing photodynamic therapy (PDT) is limited because of the absorption of visible excitation light in biological tissue. It can be augmented by means of upconversion nanoparticles (UCNPs) transforming deep-penetrating near-infrared (NIR) light to visible light, exciting PDT drugs. We report here a facile strategy to assemble such PDT nanocomposites functionalized for cancer targeting, based on coating of the UCNPs with a silica layer encapsulating the Rose Bengal photosensitizer and bioconjugation to antibodies through a bifunctional fusion protein consisting of a solid-binding peptide linker genetically fused to Streptococcus Protein G'. The fusion protein (Linker-Protein G) mediates the functionalization of silica-coated UCNPs with cancer cell antibodies, allowing for specific target recognition and delivery. The resulting nanocomposites were shown to target cancer cells specifically, generate intracellular reactive oxygen species under 980 nm excitation, and induce NIR-triggered phototoxicity to suppress cancer cell growth in vitro.


Assuntos
Anticorpos Antineoplásicos , Nanocompostos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Rosa Bengala , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Rosa Bengala/química , Rosa Bengala/farmacologia
8.
Lasers Med Sci ; 26(3): 401-13, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21190054

RESUMO

The effects of non-ablative infrared (IR) laser treatment of collagenous tissue have been commonly interpreted in terms of collagen denaturation spread over the laser-heated tissue area. In this work, the existing model is refined to account for the recently reported laser-treated tissue heterogeneity and complex collagen degradation pattern using comprehensive optical imaging and calorimetry toolkits. Patella ligament (PL) provided a simple model of type I collagen tissue containing its full structural content from triple-helix molecules to gross architecture. PL ex vivo was subjected to IR laser treatments (laser spot, 1.6 mm) of equal dose, where the tissue temperature reached the collagen denaturation temperature of 60 ± 2°C at the laser spot epicenterin the first regime, and was limited to 67 ± 2°C in the second regime. The collagen network was analyzed versus distance from the epicenter. Experimental characterization of the collagenous tissue at all structural levels included cross-polarization optical coherence tomography, nonlinear optical microscopy, light microscopy/histology, and differential scanning calorimetry. Regressive rearrangement of the PL collagen network was found to spread well outside the laser spot epicenter (>2 mm) and was accompanied by multilevel hierarchical reorganization of collagen. Four zones of distinct optical and morphological properties were identified, all elliptical in shape, and elongated in the direction perpendicular to the PL long axis. Although the collagen transformation into a random-coil molecular structure was occasionally observed, it was mechanical integrity of the supramolecular structures that was primarily compromised. We found that the structural rearrangement of the collagen network related primarily to the heat-induced thermo-mechanical effects rather than molecular unfolding. The current body of evidence supports the notion that the supramolecular collagen structure suffered degradation of various degrees, which gave rise to the observed zonal character of the laser-treated lesion.


Assuntos
Terapia com Luz de Baixa Intensidade , Ligamento Patelar/efeitos da radiação , Animais , Varredura Diferencial de Calorimetria , Colágeno/química , Colágeno/efeitos da radiação , Feminino , Terapia com Luz de Baixa Intensidade/efeitos adversos , Masculino , Fenômenos Ópticos , Ligamento Patelar/metabolismo , Ligamento Patelar/patologia , Desnaturação Proteica/efeitos da radiação , Coelhos , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA