Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 301: 115817, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36228889

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Preparations from the bark and leaves of Schinus terebinthifolia Raddi are commonly used to treat toothaches and sore throats. The use of medications based on leaves of this plant has also been reported for pain of arthritis, toothache, and sore throat. Some evidence indicated that the lectin SteLL is an antinociceptive agent from leaves. AIM OF THE STUDY: This study evaluated the antinociceptive activity of S. terebinthifolia leaf lectin (SteLL) using mouse models of peripheral and central nociception. MATERIALS AND METHODS: Animals were treated intraperitoneally with SteLL at 1, 5, and 10 mg/kg. An acetic acid-induced abdominal writhing test was performed to screen for the antinociceptive effect of the lectin. Next, the formalin test was used to assess the effects of SteLL on neurogenic (first phase) and inflammatory (second phase) pain, as well as to investigate the involvement of the carbohydrate-recognition domain (CRD) of SteLL and opioid receptors in the antinociceptive effect. The tail immersion test was performed to assess the central antinociception. Additionally, a rotarod test was performed to evaluate the effects of lectin on motor coordination in mice. RESULTS: SteLL reduced the number of acetic acid-induced writhes by 83.5-100.0%. In the first phase of the formalin test, SteLL reduced paw licking time by 49.4-50.5%, while in the second phase, SteLL reduced paw licking time by 80.5-82.6%. This antinociceptive effect was reversed by the previous incubation of the lectin with ovalbumin (indicating the possible involvement of the CRD) and by the administration of naloxone, a nonselective opioid receptor antagonist. When testing selective antagonists of opioid receptors (µ, δ, and κ), only naltrindole, a selective δ receptor antagonist, blocked the antinociceptive action of SteLL during the second phase of the formalin test. In the tail immersion test, SteLL (1, 5, and 10 mg/kg) administration reduced sensitivity to thermal stimulus, which was observed even after 2 h. SteLL (10 mg/kg) did not affect animal motor coordination in rotarod test when compared to the control group. CONCLUSION: SteLL has peripheral and central analgesic action involving opioid receptor modulation without affecting the motor coordination of animals. These results provide new perspectives for developing analgesic agents using lectins.


Assuntos
Anacardiaceae , Lectinas , Animais , Camundongos , Analgésicos , Carboidratos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Folhas de Planta , Receptores Opioides
2.
Int J Biol Macromol ; 192: 232-240, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634324

RESUMO

This study reports the development of conjugates based on quantum dots (QD)s and lectins from Schinus terebinthifolia leaves (SteLL) and Punica granatum sarcotesta (PgTeL). Cryptococcus neoformans cells were chosen to evaluate the efficiency of the conjugates. Lectins were conjugated to QDs via adsorption, and the optical parameters (emission and absorption) were monitored. Lectin stability in the conjugates towards denaturing agents was investigated via fluorometry. The conjugation was evaluated using fluorescence microplate (FMA) and hemagglutination (HA) assays. The labeling of the C. neoformans cell surface was quantified using flow cytometry and observed via fluorescence microscopy. The QDs-SteLL and QDs-PgTeL conjugates, obtained at pH 7.0 and 8.0, respectively, showed the maintenance of colloidal and optical properties. FMA confirmed the conjugation, and the HA assay indicated that the lectin carbohydrate-binding ability was preserved after conjugation. SteLL and PgTeL showed stability towards high urea concentrations and heating. Conjugates labeled over 90% of C. neoformans cells as observed via flow cytometry and confirmed through fluorescence microscopy. C. neoformans labeling by conjugates was inhibited by glycoproteins, suggesting specific interactions through the lectin carbohydrate-binding site. Thus, an effective protocol for the conjugation of SteLL or PgTeL with QDs was proposed, yielding new nanoprobes useful for glycobiological studies.


Assuntos
Anacardiaceae/química , Corantes Fluorescentes/química , Lectinas/química , Punica granatum/química , Pontos Quânticos/química , Cryptococcus neoformans , Hemaglutinação , Microscopia de Fluorescência , Nanopartículas/química , Extratos Vegetais/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA