Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 105: 157-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23470198

RESUMO

The activation of nitric oxide (NO) production is an analgesic mechanism shared by drugs such as morphine and diclofenac. Therefore, the controlled release of low amounts of NO seems to be a promising analgesic approach. In the present study, the antinociceptive effect of the ruthenium NO donor [Ru(bpy)2(NO)SO3](PF6) (complex I) was investigated. It was observed that complex I inhibited in a dose (0.3-10mg/kg)-dependent manner the acetic acid-induced writhing response. At the dose of 1mg/kg, complex I inhibited the phenyl-p-benzoquinone-induced writhing response and formalin- and complete Freund's adjuvant-induced licking and flinch responses. Additionally, complex I also inhibited transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent overt pain-like behavior induced by capsaicin. Complex I also inhibited the carrageenin-induced mechanical hyperalgesia and increase of myeloperoxidase activity (MPO) in paw skin samples. The inhibitory effect of complex I in the carrageenin-induced hyperalgesia, MPO activity and formalin was prevented by the treatment with ODQ, KT5823 and glybenclamide, indicating that complex I inhibits inflammatory hyperalgesia by activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. The present study demonstrates the efficacy of a novel ruthenium NO donor and its analgesic mechanisms.


Assuntos
Inflamação/prevenção & controle , Doadores de Óxido Nítrico/farmacologia , Dor/prevenção & controle , Canais de Potássio/metabolismo , Compostos de Rutênio/farmacologia , Transdução de Sinais , Canais de Cátion TRPV/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA