Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 86(16): 557-574, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37350297

RESUMO

This study aimed to characterize the phytochemical profile of bark and leaves aqueous extract Commiphora leptophloeos, and conduct in vivo and in vitro assays to determine the presence of any toxicological consequences due to exposure. The phytochemical analysis was carried out using high-performance liquid chromatography (HPLC). The antioxidant activity was estimated utilizing DPPH free radical scavenging and phosphomolybdenum assays. Cell viability was measured by the MTT method on J774 and human adenocarcinoma cells, which were treated with concentrations of 12,5, 25, 50, 100 or 200 µg/ml of both extracts. Acute oral toxicity, genotoxicity, and mutagenicity assays were determined using a single oral dose of 2000 g/kg in male Swiss albino mice (Mus musculus). Biochemical analysis of the blood and histological analyses of the kidneys, liver, spleen, pylorus, duodenum and jejunum were undertaken. Genotoxicity and mutagenicity were determined utilizing blood samples. Gallic acid, catechin, and epicatechin were identified in the bark and chlorogenic acid in leaves. Data demonstrated a high content of phenolic compounds and flavonoids associated with significant antioxidant potential. No significant signs in damage or symptoms of toxicity were detected. No marked reduction in cell viability was found at lower concentrations tested. On histomorphometry, only the gastrointestinal organs exhibited significant difference. Renal hepatic and blood parameters were within the normal range. No apparent signs of toxicity, genotoxicity, mutagenicity or cytotoxicity were found in vivo and in vitro experiments.


Assuntos
Antioxidantes , Catequina , Camundongos , Animais , Masculino , Humanos , Antioxidantes/química , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Commiphora , Casca de Planta/química , Compostos Fitoquímicos/toxicidade , Folhas de Planta/química
2.
J Ethnopharmacol ; 272: 113941, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33610703

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Syagrus coronata, popularly known as licuri, is a palm native to caatingas. The fixed oil extract of licuri nuts is used by the population of Northeast Brazil for therapeutic purposes, including as an antifungal, anti-inflammatory, and a cicatrizant agent. However, there is no scientific information on the possible harmful health effects of the oil and hence its medicinal usability is unknown. AIM OF THE STUDY: We aimed to analyze the biological safety and possible antioxidant activity of fixed S. Coronata oil. MATERIALS AND METHODS: Chemical analysis of the oil was performed using gas chromatography with flame ionization detection (CG-FID). The cytotoxicity of varying concentrations of the oil (12.5, 25, 50, 100, and 200 µg/mL) was evaluated using the tetrazolium reduction assay in three cell lines: HEK-293 kidney embryonic cells, J774.A1 macrophages, and the tumor line Sarcoma-180 (S-180). Oral toxicity, genotoxicity, and mutagenicity tests were performed in mice which were administered a single dose of 2000 mg/kg of fixed licuri oil, by gavage. For acute toxicity tests, changes in blood and biochemical parameters, behavior, and weight were analyzed; histomorphometric analyses of the liver, kidney, and spleen were also performed. The comet assay and micronucleus (MN) test were performed to analyze genotoxicity. The antioxidant potential was assessed by the total antioxidant capacity (AAT) and DPPH elimination activity. RESULTS: Licuri oil consists predominantly of saturated fatty acids, and lauric acid is the major compound. The highest concentrations of the oil showed low levels of cytotoxicity; however, LC50 was not reached in any of the tests. The acute toxicity study did not reveal any evidence of adverse effects in animals treated with oil; biochemical investigation of blood showed a decrease in blood concentration of total proteins and uric acid. The kidneys, spleen, and liver showed no morphological changes indicative of a pathological process. Genotoxic or mutagenic activity was not detected through both the comet assay and MN test. In addition, the oil showed low antioxidant activity in both methods. CONCLUSION: Licuri oil from the stem of S. coronata did not present significant toxic effects as well as absence of genetic damage when administered orally. Future studies are needed to investigate its pharmacological potential.


Assuntos
Arecaceae/química , Dano ao DNA/efeitos dos fármacos , Óleo de Palmeira/farmacologia , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Ácidos Graxos/análise , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Óleo de Palmeira/administração & dosagem , Óleo de Palmeira/toxicidade , Baço/efeitos dos fármacos , Testes de Toxicidade Aguda
3.
J Ethnopharmacol ; 253: 112567, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32027999

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Himatanthus drasticus is a tree popularly known as janaguba. Endemic to Brazil, it is found in the Cerrado and Caatinga biomes, rock fields, and rainforests. Janaguba latex has been used in folk medicine for its antineoplastic, anti-inflammatory, analgesic, and antiallergic activities. However, studies investigating the safety of its use for medicinal purposes are limited. AIM OF THE STUDY: This study aimed to evaluate the toxicity of the latex extracted from H. drasticus. MATERIALS AND METHODS: The latex was extracted from H. drasticus specimens by removing a small area of bark (5 × 30 cm) and then dissolving the exudate in water and lyophilizing it. Phytochemical screening was performed by TLC and GC-MS, protein, and carbohydrate levels. Cell viability was performed by the MTT method. Acute oral toxicity, genotoxicity, and mutagenicity assays were performed in mice. RESULTS: TLC showed the presence of saponins and reducing sugars, as well as steroids and terpenes. The GC-MS analysis of the nonpolar fraction identified lupeol acetate, betulin, and α/ß-amyrin derivatives as the major compounds. The latex was toxic to S-180 cells at 50 and 100 µg/mL. No signals of toxicity or mutagenicity was found in mice treated with 2000 mg/kg of the latex, but genotoxicity was observed in the Comet assay. CONCLUSIONS: H. drasticus latex showed toxicity signals at high doses (2000 mg/kg). Although the latex was not mutagenic to mice, it was genotoxic in the Comet assay in our experimental conditions. Even testing a limit dose of 2000 mg/kg, which is between 10 to 35-fold the amount used in folk medicine, caution must be taken since there is no safe level for genotoxic compounds exposure. Further studies on the toxicological aspects of H. drasticus latex are necessary to elucidate its possible mechanisms of genotoxicity.


Assuntos
Apocynaceae/química , Látex/toxicidade , Mutagênicos/toxicidade , Animais , Linhagem Celular Tumoral , Ensaio Cometa , Relação Dose-Resposta a Droga , Humanos , Látex/administração & dosagem , Látex/isolamento & purificação , Masculino , Camundongos , Mutagênicos/administração & dosagem , Mutagênicos/isolamento & purificação , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA