Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 119: 155000, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541071

RESUMO

BACKGROUND: Lychnophora ericoides Mart, also known as the Brazilian arnica or fake arnica, belongs to the Asteraceae family. Leaves and roots are used in alcoholic and hydroalcoholic preparations for the treatment of wounds, inflammation, and pain. PURPOSE: The present study aimed to investigate the effects of L. ericoides ethanolic extract (EELE) on cutaneous wound healing and the mechanisms of action involved. METHODS: A total of 72 C57BL/6 mice were randomly divided into four groups of six animals each. An excisional wound was made in the dorsal region of each mouse. The test groups were topically treated with the vehicle, a positive control commercial reference drug, EELE ointment (5%), and EELE ointment (10%). The treatments were applied over 14 days. The wound area was measured every two days to verify the wound closure kinetics. On days 3, 7, and 14 the wound tissue samples were processed for Hematoxylin and Eosin, Masson-Trichrome, and Toluidine blue staining. The expression of renin-angiotensin system (RAS) components, the vascular growth factor-A (VEGF-A), the basic fibroblast growth factor (FGF-2), and type I collagen genes were evaluated. Phytochemical analyses were performed using HPLC-DAD and HPLC-MS/MS. RESULTS: The EELE (10%) significantly reduced the wound area compared to the treatments used for the other groups. Histological analysis demonstrated that wounds treated with L. ericoides for 14 days developed improved anatomical skin features, healed with hair follicles and sebaceous glands, increased collagen production and angiogenesis, and decreased the number of mast cells at the injury site. Real-time PCR data demonstrated that groups treated with EELE (10%) showed increased Type I collagen, VEGF-A, FGF-2, and AT1R and decreased ACE II and receptor MAS. The healing action of L. ericoides may be related to the presence of phenolic compounds, such as phenolic acids, chlorogenic acid derivatives, and C-glycoside flavonoids. CONCLUSION: Topical treatment with EELE increases important factors for wound healing: FGF, VEGF, collagen formation, and the expression of the proliferative axis of the renin-angiotensin system. For the first time, the present study shows the healing action of L. ericoides at the molecular level in an animal model. This process can be used as an alternative therapy for wound healing and the development of herbal therapy.


Assuntos
Arnica , Asteraceae , Camundongos , Animais , Arnica/metabolismo , Etanol/química , Colágeno Tipo I/metabolismo , Brasil , Espectrometria de Massas em Tandem , Pomadas/metabolismo , Pomadas/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Asteraceae/química , Cicatrização , Pele , Colágeno/metabolismo
2.
Planta Med ; 89(7): 700-708, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36889328

RESUMO

Licarin A, a dihydrobenzofuranic neolignan presents in several medicinal plants and seeds of nutmeg, exhibits strong activity against protozoans responsible for Chagas disease and leishmaniasis. From biomimetic reactions by metalloporphyrin and Jacobsen catalysts, seven products were determined: four isomeric products yielded by epoxidation from licarin A, besides a new product yielded by a vicinal diol, a benzylic aldehyde, and an unsaturated aldehyde in the structure of the licarin A. The incubation with rat and human liver microsomes partially reproduced the biomimetic reactions by the production of the same epoxidized product of m/z 343 [M + H]+. In vivo acute toxicity assays of licarin A suggested liver toxicity based on biomarker enzymatic changes. However, microscopic analysis of tissues sections did not show any tissue damage as indicative of toxicity after 14 days of exposure. New metabolic pathways of the licarin A were identified after in vitro biomimetic oxidation reaction and in vitro metabolism by rat or human liver microsomes.


Assuntos
Lignanas , Metaloporfirinas , Ratos , Humanos , Animais , Biomimética , Oxirredução , Lignanas/toxicidade , Metaloporfirinas/metabolismo , Microssomos Hepáticos/metabolismo
3.
Biomed Pharmacother ; 149: 112921, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36068780

RESUMO

The growing use of phytotherapy in clinical practice arouses interest in studies using medicinal plants as active ingredients for new medicines. Ipomoea pes-caprae has a wide medicinal use in the treatment of inflammatory disorders, skin wounds, stings, and painful rheumatic processes. Assayed in this study are the physicochemical characterization of a gel developed with this extract and the evaluation of its anti-inflammatory and healing efficacy, in addition to its antiedematogenic action on Bothrops snake envenoming in mice. The qualitative and quantitative analyses of the hydroethanolic extract by mass spectrometry showed 18 phenolic compounds, highlighting a high content of chlorogenic acid (0.92 µg/g), neochlorogenic acid (6.07 µg/g), and isochlorogenic acid (0.80 µg/g) compounds. The formulation was stable in relation to the physical-chemical characteristics during the time of analysis and was considered safe for topical treatment in animals, causing no skin irritation. Although the results have shown an absence of activity in the model of ear edema induced by croton oil (acute inflammation), the herbal gel efficiently inhibited carrageenan paw edema and chronic ear edema induced by multiple applications of croton oil, which may indicate the possible performance under the kinin pathway such as bradykinin, histamine, and serotonin. Wound healing in the group treated with the I. pes-caprae gel was accelerated compared with the placebo group, also confirmed through histological data. Edema induced by Bothrops erythromelas snake venom was efficiently reduced in the treatment with I. pes-caprae gel associated with the antibothropic-crotalic serum, whereas the antivenom alone was not effective. This approach presents a promising formulation based on I. pes-caprae with potential therapeutic use for inflammatory disorders.


Assuntos
Bothrops , Convolvulaceae , Ipomoea , Mordeduras de Serpentes , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivenenos/farmacologia , Óleo de Cróton/farmacologia , Edema/induzido quimicamente , Géis/farmacologia , Camundongos , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/farmacologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA