Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38412117

RESUMO

CONTEXT: Low magnesium levels, which are common in people with type 2 diabetes, are associated with increased levels of pro-inflammatory molecules. It is unknown whether magnesium supplementation decreases this low-grade inflammation in people with type 2 diabetes. OBJECTIVE: We performed a multidimensional immunophenotyping to better understand the effect of magnesium supplementation on the immune system of people with type 2 diabetes and low magnesium levels. METHODS: Using a randomized, double-blind, placebo-controlled, two-period, cross-over study, we compared the effect of magnesium supplementation (15 mmol/day) to placebo on the immunophenotype including whole blood immune cell counts, T-cell and CD14+ monocyte function after ex vivo stimulation, and the circulating inflammatory proteome. RESULTS: We included 12 adults with insulin-treated type 2 diabetes (7 males, mean±SD age 67±7 years, BMI 31±5 kg/m2, HbA1c 7.5±0.9 %) and low magnesium levels (0.73±0.05 mmol/l). Magnesium treatment significantly increased serum magnesium and the urinary magnesium excretion, when compared to placebo. The IFN-γ production from PMA/ionomycin stimulated CD8+ T-cells and T-helper 1 cells, as well as the IL4/IL5/IL13 production from T-helper 2 cells was lower after treatment with magnesium compared to placebo. Magnesium supplementation did not affect immune cell numbers, ex vivo monocyte function and circulating inflammatory proteins, although we found a tendency for lower high sensitive CRP levels after magnesium supplementation compared to placebo. CONCLUSIONS: In conclusion, magnesium supplementation modulates the function of CD4+ and CD8+ T-cells in people with type 2 diabetes and low serum magnesium levels.

2.
Diabetologia ; 67(1): 52-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922013

RESUMO

AIMS/HYPOTHESIS: Hypomagnesaemia has been associated with insulin resistance and an increased risk of type 2 diabetes. Whether magnesium supplementation improves insulin sensitivity in people with type 2 diabetes and a low serum magnesium level is unknown. METHODS: Using a randomised, double-blind (both participants and investigators were blinded to the participants' treatment sequences), placebo-controlled, crossover study design, we compared the effect of oral magnesium supplementation (15 mmol/day) for 6 weeks with that of matched placebo in individuals with insulin-treated type 2 diabetes (age ≥18 years, BMI 18-40 kg/m2, HbA1c <100 mmol/mol [11.3%], serum magnesium ≤0.79 mmol/l). Participants were recruited from the outpatient clinic and through advertisements. Randomisation to a treatment sequence order was done using a randomisation list. We used block randomisation and the two possible treatment sequences were evenly distributed among the trial population. The primary outcome was the mean glucose infusion rate during the final 30 min of a hyperinsulinaemic-euglycaemic clamp (i.e. M value). Secondary outcomes included variables of glucose control, insulin need, BP, lipid profile and hypomagnesaemia-related symptoms during follow-up. RESULTS: We recruited 14 participants (50% women, 100% White, mean ± SD age 67±6 years, BMI 31±5 kg/m2, HbA1c 58±9 mmol/mol [7.4±0.9%]) with insulin-treated type 2 diabetes. Magnesium supplementation increased both mean ± SEM serum magnesium level (0.75±0.02 vs 0.70±0.02 mmol/l, p=0.016) and urinary magnesium excretion (magnesium/creatinine ratio, 0.23±0.02 vs 0.15±0.02, p=0.005), as compared with placebo. The M value of the glucose clamp did not differ between the magnesium and placebo study arms (4.6±0.5 vs 4.4±0.6 mg kg-1 min-1, p=0.108). During the 6 weeks of treatment, continuous glucose monitoring outcomes, HbA1c, insulin dose, lipid profile and BP also did not differ, except for a lower HDL-cholesterol concentration after magnesium compared with placebo (1.14±0.08 vs 1.20±0.09 mmol/l, p=0.026). Symptoms potentially related to hypomagnesaemia were similar for both treatment arms. CONCLUSIONS/INTERPRETATION: Despite an albeit modest increase in serum magnesium concentration, oral magnesium supplementation does not improve insulin sensitivity in people with insulin-treated type 2 diabetes and low magnesium levels. TRIAL REGISTRATION: EudraCT number 2021-001243-27. FUNDING: This study was supported by a grant from the Dutch Diabetes Research Foundation (2017-81-014).


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Magnésio , Adolescente , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glicemia , Automonitorização da Glicemia , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Lipídeos , Magnésio/administração & dosagem , Magnésio/uso terapêutico
3.
Nephrol Dial Transplant ; 38(3): 679-690, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35561741

RESUMO

BACKGROUND: Hypomagnesaemia with secondary hypocal-caemia (HSH) is a rare autosomal recessive disorder caused by pathogenic variants in TRPM6, encoding the channel-kinase transient receptor potential melastatin type 6. Patients have very low serum magnesium (Mg2+) levels and suffer from muscle cramps and seizures. Despite genetic testing, a subgroup of HSH patients remains without a diagnosis. METHODS: In this study, two families with an HSH phenotype but negative for TRPM6 pathogenic variants were subjected to whole exome sequencing. Using a complementary combination of biochemical and functional analyses in overexpression systems and patient-derived fibroblasts, the effect of the TRPM7-identified variants on Mg2+ transport was examined. RESULTS: For the first time, variants in TRPM7 were identified in two families as a potential cause for hereditary HSH. Patients suffer from seizures and muscle cramps due to magnesium deficiency and episodes of hypocalcaemia. In the first family, a splice site variant caused the incorporation of intron 1 sequences into the TRPM7 messenger RNA and generated a premature stop codon. As a consequence, patient-derived fibroblasts exhibit decreased cell growth. In the second family, a heterozygous missense variant in the pore domain resulted in decreased TRPM7 channel activity. CONCLUSIONS: We establish TRPM7 as a prime candidate gene for autosomal dominant hypomagnesaemia and secondary hypocalcaemia. Screening of unresolved patients with hypocalcaemia and secondary hypocalcaemia may further establish TRPM7 pathogenic variants as a novel Mendelian disorder.


Assuntos
Hipocalcemia , Canais de Cátion TRPM , Humanos , Magnésio , Canais de Cátion TRPM/metabolismo , Cãibra Muscular/complicações , Proteínas Serina-Treonina Quinases/metabolismo
4.
Endocr Rev ; 44(3): 357-378, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346820

RESUMO

Hypomagnesemia is 10-fold more common in individuals with type 2 diabetes (T2D) than in the healthy population. Factors that are involved in this high prevalence are low Mg2+ intake, gut microbiome composition, medication use, and presumably genetics. Hypomagnesemia is associated with insulin resistance, which subsequently increases the risk to develop T2D or deteriorates glycemic control in existing diabetes. Mg2+ supplementation decreases T2D-associated features like dyslipidemia and inflammation, which are important risk factors for cardiovascular disease (CVD). Epidemiological studies have shown an inverse association between serum Mg2+ and the risk of developing heart failure (HF), atrial fibrillation (AF), and microvascular disease in T2D. The potential protective effect of Mg2+ on HF and AF may be explained by reduced oxidative stress, fibrosis, and electrical remodeling in the heart. In microvascular disease, Mg2+ reduces the detrimental effects of hyperglycemia and improves endothelial dysfunction; however, clinical studies assessing the effect of long-term Mg2+ supplementation on CVD incidents are lacking, and gaps remain on how Mg2+ may reduce CVD risk in T2D. Despite the high prevalence of hypomagnesemia in people with T2D, routine screening of Mg2+ deficiency to provide Mg2+ supplementation when needed is not implemented in clinical care as sufficient clinical evidence is lacking. In conclusion, hypomagnesemia is common in people with T2D and is involved both as cause, probably through molecular mechanisms leading to insulin resistance, and as consequence and is prospectively associated with development of HF, AF, and microvascular complications. Whether long-term supplementation of Mg2+ is beneficial, however, remains to be determined.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Risco , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/complicações , Magnésio/uso terapêutico , Fatores de Risco de Doenças Cardíacas
5.
Pflugers Arch ; 474(3): 293-302, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997297

RESUMO

Dietary fibers have been shown to increase the intestinal absorption of calcium (Ca2+) and magnesium (Mg2+). However, the mechanisms that explain the enhanced electrolyte absorption remain unknown. Therefore, this study aims to investigate the short-term and long-term effects of 5% (w/w) sodium butyrate (Na-butyrate), an important end-metabolite of bacterial fermentation of dietary fibers, on Ca2+ and Mg2+ homeostasis in mice. Serum Ca2+ levels were only significantly increased in mice treated with Na-butyrate for 1 day. This was associated with a twofold increase in the mRNA expression levels of Trpv6 in the proximal and distal colon. Contrary, Na-butyrate did not affect serum Mg2+ concentrations at either of the intervention periods. However, we observed a reduction in urinary Mg2+ excretion, although not significantly, after 1 day of treatment. A significant reduction of 2.5-fold in urinary Mg2+ excretion was observed after 14 days of treatment. Indeed, 14-day Na-butyrate supplementation increased colonic Trpm7 expression by 1.2-fold compared to control mice. In conclusion, short-term Na-butyrate supplementation increases serum Ca2+ levels in mice. This was associated with increased mRNA expression levels of Trpv6 in the colon, suggesting that Na-butyrate regulates the expression of genes involved in active intestinal Ca2+ absorption.


Assuntos
Sódio na Dieta , Canais de Cátion TRPM , Animais , Ácido Butírico/farmacologia , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Colo , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Sódio na Dieta/metabolismo , Sódio na Dieta/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
6.
Kidney Int ; 97(3): 487-501, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866113

RESUMO

Klotho knock-out mice are an important model for vascular calcification, which is associated with chronic kidney disease. In chronic kidney disease, serum magnesium inversely correlates with vascular calcification. Here we determine the effects of serum magnesium on aortic calcification in Klotho knock-out mice treated with a minimal or a high magnesium diet from birth. After eight weeks, serum biochemistry and aorta and bone tissues were studied. Protective effects of magnesium were characterized by RNA-sequencing of the aorta and micro-CT analysis was performed to study bone integrity. A high magnesium diet prevented vascular calcification and aortic gene expression of Runx2 and matrix Gla protein found in such mice on the minimal magnesium diet. Differential expression of inflammation and extracellular matrix remodeling genes accompanied the beneficial effects of magnesium on calcification. High dietary magnesium did not affect serum parathyroid hormone, 1,25-dihydroxyvitamin D3 or calcium. High magnesium intake prevented vascular calcification despite increased fibroblast growth factor-23 and phosphate concentration in the knock-out mice. Compared to mice on the minimal magnesium diet, the high magnesium diet reduced femoral bone mineral density by 20% and caused excessive osteoid formation indicating osteomalacia. Osteoclast activity was unaffected by the high magnesium diet. In Saos-2 osteoblasts, magnesium supplementation reduced mineralization independent of osteoblast function. Thus, high dietary magnesium prevents calcification in Klotho knock-out mice. These effects are potentially mediated by reduction of inflammatory and extracellular matrix remodeling pathways within the aorta. Hence magnesium treatment may be promising to prevent vascular calcification, but the risk for osteomalacia should be considered.


Assuntos
Glucuronidase/deficiência , Magnésio/farmacologia , Insuficiência Renal Crônica , Calcificação Vascular , Animais , Glucuronidase/genética , Proteínas Klotho , Camundongos , Camundongos Knockout , Hormônio Paratireóideo , Fosfatos , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle
7.
Nephrol Dial Transplant ; 35(5): 765-773, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605492

RESUMO

BACKGROUND: Phosphate (Pi) toxicity is a strong determinant of vascular calcification development in chronic kidney disease (CKD). Magnesium (Mg2+) may improve cardiovascular risk via vascular calcification. The mechanism by which Mg2+ counteracts vascular calcification remains incompletely described. Here we investigated the effects of Mg2+ on Pi and secondary crystalline calciprotein particles (CPP2)-induced calcification and crystal maturation. METHODS: Vascular smooth muscle cells (VSMCs) were treated with high Pi or CPP2 and supplemented with Mg2+ to study cellular calcification. The effect of Mg2+ on CPP maturation, morphology and composition was studied by medium absorbance, electron microscopy and energy dispersive spectroscopy. To translate our findings to CKD patients, the effects of Mg2+ on calcification propensity (T50) were measured in sera from CKD patients and healthy controls. RESULTS: Mg2+ supplementation prevented Pi-induced calcification in VSMCs. Mg2+ dose-dependently delayed the maturation of primary CPP1 to CPP2 in vitro. Mg2+ did not prevent calcification and associated gene and protein expression when added to already formed CPP2. Confirmatory experiments in human serum demonstrated that the addition of 0.2 mmol/L Mg2+ increased T50 from healthy controls by 51 ± 15 min (P < 0.05) and CKD patients by 44 ± 13 min (P < 0.05). Each further 0.2 mmol/L addition of Mg2+ led to further increases in both groups. CONCLUSIONS: Our results demonstrate that crystalline CPP2 mediates Pi-induced calcification in VSMCs. In vitro, Mg2+ delays crystalline CPP2 formation and thereby prevents Pi-induced calcification.


Assuntos
Fosfatos de Cálcio/metabolismo , Suplementos Nutricionais , Magnésio/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Calcificação Vascular/prevenção & controle , alfa-2-Glicoproteína-HS/metabolismo , Células Cultivadas , Humanos , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/metabolismo
8.
Curr Opin Nephrol Hypertens ; 28(4): 368-374, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31045659

RESUMO

PURPOSE OF REVIEW: Vascular calcification is a major contributor to increased cardiovascular mortality in chronic kidney disease (CKD). Recently, calciprotein particles (CPP) were identified to drive the calcification process. CPP may explain the effects of high phosphate on vascular calcification. Magnesium is a promising novel therapeutic approach to halt vascular calcification, because it inhibits CPP maturation and is associated with reduced cardiovascular mortality in CKD. We aim to examine the current evidence for the role of CPP in the calcification process and to explain how magnesium prevents calcification. RECENT FINDINGS: A recent meta-analysis concluded that reducing high phosphate levels in CKD patients does not associate with lowering cardiovascular mortality. Inhibition of CPP formation prevents phosphate-induced calcification in vitro. Consequently, delaying CPP formation and maturation may be a clinical approach to reduce calcification. Magnesium inhibits CPP maturation and vascular calcification. Clinical pilot studies suggest that magnesium is a promising intervention strategy against calcification in CKD patients. SUMMARY: CPP induce vascular calcification and are modulated by serum phosphate and magnesium concentrations. Magnesium is a strong inhibitor of CPP maturation and therefore, a promising therapeutic approach to reduce vascular calcification in CKD. Currently, several studies are being performed to determine the clinical outcomes of magnesium supplementation in CKD.


Assuntos
Cálcio/sangue , Magnésio/fisiologia , Fosfatos/sangue , Calcificação Vascular/etiologia , alfa-2-Glicoproteína-HS/metabolismo , Nanopartículas Calcificantes/fisiologia , Humanos
9.
Pediatr Nephrol ; 32(7): 1123-1135, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27234911

RESUMO

Magnesium is essential to the proper functioning of numerous cellular processes. Magnesium ion (Mg2+) deficits, as reflected in hypomagnesemia, can cause neuromuscular irritability, seizures and cardiac arrhythmias. With normal Mg2+ intake, homeostasis is maintained primarily through the regulated reabsorption of Mg2+ by the thick ascending limb of Henle's loop and distal convoluted tubule of the kidney. Inadequate reabsorption results in renal Mg2+ wasting, as evidenced by an inappropriately high fractional Mg2+ excretion. Familial renal Mg2+ wasting is suggestive of a genetic cause, and subsequent studies in these hypomagnesemic families have revealed over a dozen genes directly or indirectly involved in Mg2+ transport. Those can be classified into four groups: hypercalciuric hypomagnesemias (encompassing mutations in CLDN16, CLDN19, CASR, CLCNKB), Gitelman-like hypomagnesemias (CLCNKB, SLC12A3, BSND, KCNJ10, FYXD2, HNF1B, PCBD1), mitochondrial hypomagnesemias (SARS2, MT-TI, Kearns-Sayre syndrome) and other hypomagnesemias (TRPM6, CNMM2, EGF, EGFR, KCNA1, FAM111A). Although identification of these genes has not yet changed treatment, which remains Mg2+ supplementation, it has contributed enormously to our understanding of Mg2+ transport and renal function. In this review, we discuss general mechanisms and symptoms of genetic causes of hypomagnesemia as well as the specific molecular mechanisms and clinical phenotypes associated with each syndrome.


Assuntos
Arritmias Cardíacas/sangue , Hipercalciúria/genética , Deficiência de Magnésio/genética , Magnésio/sangue , Nefrocalcinose/genética , Eliminação Renal/genética , Reabsorção Renal/genética , Erros Inatos do Transporte Tubular Renal/genética , Convulsões/sangue , Arritmias Cardíacas/etiologia , Criança , Bloqueadores do Canal de Sódio Epitelial/uso terapêutico , Homeostase/genética , Humanos , Hipercalciúria/sangue , Hipercalciúria/complicações , Hipercalciúria/tratamento farmacológico , Hipopotassemia/sangue , Hipopotassemia/tratamento farmacológico , Hipopotassemia/etiologia , Hipopotassemia/genética , Túbulos Renais Distais/fisiologia , Alça do Néfron/fisiologia , Magnésio/fisiologia , Magnésio/uso terapêutico , Deficiência de Magnésio/complicações , Deficiência de Magnésio/tratamento farmacológico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Mitocôndrias/metabolismo , Mutação , Nefrocalcinose/sangue , Nefrocalcinose/complicações , Nefrocalcinose/tratamento farmacológico , Fenótipo , Recomendações Nutricionais , Reabsorção Renal/efeitos dos fármacos , Erros Inatos do Transporte Tubular Renal/sangue , Erros Inatos do Transporte Tubular Renal/complicações , Erros Inatos do Transporte Tubular Renal/tratamento farmacológico , Convulsões/etiologia
10.
Diabetes ; 65(1): 3-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26696633

RESUMO

Over the past decades, hypomagnesemia (serum Mg(2+) <0.7 mmol/L) has been strongly associated with type 2 diabetes mellitus (T2DM). Patients with hypomagnesemia show a more rapid disease progression and have an increased risk for diabetes complications. Clinical studies demonstrate that T2DM patients with hypomagnesemia have reduced pancreatic ß-cell activity and are more insulin resistant. Moreover, dietary Mg(2+) supplementation for patients with T2DM improves glucose metabolism and insulin sensitivity. Intracellular Mg(2+) regulates glucokinase, KATP channels, and L-type Ca(2+) channels in pancreatic ß-cells, preceding insulin secretion. Moreover, insulin receptor autophosphorylation is dependent on intracellular Mg(2+) concentrations, making Mg(2+) a direct factor in the development of insulin resistance. Conversely, insulin is an important regulator of Mg(2+) homeostasis. In the kidney, insulin activates the renal Mg(2+) channel transient receptor potential melastatin type 6 that determines the final urinary Mg(2+) excretion. Consequently, patients with T2DM and hypomagnesemia enter a vicious circle in which hypomagnesemia causes insulin resistance and insulin resistance reduces serum Mg(2+) concentrations. This Perspective provides a systematic overview of the molecular mechanisms underlying the effects of Mg(2+) on insulin secretion and insulin signaling. In addition to providing a review of current knowledge, we provide novel directions for future research and identify previously neglected contributors to hypomagnesemia in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Deficiência de Magnésio/metabolismo , Magnésio/metabolismo , Desequilíbrio Hidroeletrolítico/metabolismo , Glicemia/metabolismo , Canais de Cálcio Tipo L/metabolismo , Diabetes Mellitus Tipo 2/complicações , Suplementos Nutricionais , Progressão da Doença , Glucoquinase/metabolismo , Glicogênio/biossíntese , Glicólise , Humanos , Inflamação , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Fígado/metabolismo , Magnésio/uso terapêutico , Deficiência de Magnésio/tratamento farmacológico , Obesidade/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Desequilíbrio Hidroeletrolítico/tratamento farmacológico
11.
PLoS One ; 10(9): e0138881, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397986

RESUMO

BACKGROUND: Proton-pump inhibitor-induced hypomagnesemia (PPIH) is the most recognized side effect of proton-pump inhibitors (PPIs). Additionally, PPIH is associated with hypocalcemia and hypokalemia. It is hypothesized that PPIs reduce epithelial proton secretion and thereby increase the pH in the colon, which may explain the reduced absorption of and Mg2+ and Ca2+. Fermentation of dietary oligofructose-enriched inulin fibers by the microflora leads to acidification of the intestinal lumen and by this enhances mineral uptake. This study aimed, therefore, to improve mineral absorption by application of dietary inulin to counteract PPIH. METHODS: Here, C57BL/J6 mice were supplemented with omeprazole and/or inulin. Subsequently, Mg2+ and Ca2+ homeostasis was assessed by means of serum, urine and fecal electrolyte measurements. Moreover, the mRNA levels of magnesiotropic and calciotropic genes were examined in the large intestine and kidney by real-time PCR. RESULTS: Treatment with omeprazole significantly reduced serum Mg2+ and Ca2+ levels. However, concomitant addition of dietary inulin fibers normalized serum Ca2+ but not serum Mg2+ concentrations. Inulin abolished enhanced expression of Trpv6 and S100g in the colon by omeprazole. Additionally, intestinal and renal mRNA levels of the Trpm6 gene were reduced after inulin intake. CONCLUSIONS: This study suggests that dietary inulin counteracts reduced intestinal Ca2+ absorption upon PPI treatment. In contrast, inulin did not increase intestinal absorption of Mg2+ sufficiently to recover serum Mg2+. The clinical potential of dietary inulin treatment should be the subject of future studies.


Assuntos
Fibras na Dieta/administração & dosagem , Hipocalcemia/prevenção & controle , Inulina/administração & dosagem , Omeprazol/efeitos adversos , Inibidores da Bomba de Prótons/efeitos adversos , Animais , Cálcio/sangue , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos/biossíntese , Hipocalcemia/sangue , Hipocalcemia/induzido quimicamente , Absorção Intestinal/efeitos dos fármacos , Magnésio/sangue , Masculino , Camundongos Endogâmicos C57BL , Proteína G de Ligação ao Cálcio S100/metabolismo
12.
Physiol Rev ; 95(1): 1-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25540137

RESUMO

Magnesium (Mg(2+)) is an essential ion to the human body, playing an instrumental role in supporting and sustaining health and life. As the second most abundant intracellular cation after potassium, it is involved in over 600 enzymatic reactions including energy metabolism and protein synthesis. Although Mg(2+) availability has been proven to be disturbed during several clinical situations, serum Mg(2+) values are not generally determined in patients. This review aims to provide an overview of the function of Mg(2+) in human health and disease. In short, Mg(2+) plays an important physiological role particularly in the brain, heart, and skeletal muscles. Moreover, Mg(2+) supplementation has been shown to be beneficial in treatment of, among others, preeclampsia, migraine, depression, coronary artery disease, and asthma. Over the last decade, several hereditary forms of hypomagnesemia have been deciphered, including mutations in transient receptor potential melastatin type 6 (TRPM6), claudin 16, and cyclin M2 (CNNM2). Recently, mutations in Mg(2+) transporter 1 (MagT1) were linked to T-cell deficiency underlining the important role of Mg(2+) in cell viability. Moreover, hypomagnesemia can be the consequence of the use of certain types of drugs, such as diuretics, epidermal growth factor receptor inhibitors, calcineurin inhibitors, and proton pump inhibitors. This review provides an extensive and comprehensive overview of Mg(2+) research over the last few decades, focusing on the regulation of Mg(2+) homeostasis in the intestine, kidney, and bone and disturbances which may result in hypomagnesemia.


Assuntos
Deficiência de Magnésio/prevenção & controle , Magnésio/administração & dosagem , Magnésio/metabolismo , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Sistema Cardiovascular/metabolismo , Comunicação Celular , Proliferação de Células , Sistema Digestório/metabolismo , Humanos , Rim/metabolismo , Pulmão/metabolismo , Deficiência de Magnésio/tratamento farmacológico , Músculos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA