Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 142(4): 2430, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092610

RESUMO

In seismic surveys, reflected sounds from airguns are used under water to detect gas and oil below the sea floor. The airguns produce broadband high-amplitude impulsive sounds, which may cause temporary or permanent threshold shifts (TTS or PTS) in cetaceans. The magnitude of the threshold shifts and the hearing frequencies at which they occur depend on factors such as the received cumulative sound exposure level (SELcum), the number of exposures, and the frequency content of the sounds. To quantify TTS caused by airgun exposure and the subsequent hearing recovery, the hearing of a harbor porpoise was tested by means of a psychophysical technique. TTS was observed after exposure to 10 and 20 consecutive shots fired from two airguns simultaneously (SELcum: 188 and 191 dB re 1 µPa2s) with mean shot intervals of around 17 s. Although most of the airgun sounds' energy was below 1 kHz, statistically significant initial TTS1-4 (1-4 min after sound exposure stopped) of ∼4.4 dB occurred only at the hearing frequency 4 kHz, and not at lower hearing frequencies tested (0.5, 1, and 2 kHz). Recovery occurred within 12 min post-exposure. The study indicates that frequency-weighted SELcum is a good predictor for the low levels of TTS observed.


Assuntos
Fadiga Auditiva , Comportamento Animal , Exposição Ambiental/efeitos adversos , Ruído/efeitos adversos , Phocoena/psicologia , Estimulação Acústica , Acústica , Animais , Audição , Masculino , Phocoena/fisiologia , Psicoacústica , Recuperação de Função Fisiológica , Medição de Risco , Espectrografia do Som , Fatores de Tempo
2.
J Acoust Soc Am ; 134(3): 2302-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23967960

RESUMO

Pile driving is presently the most common method used to attach wind turbines to the sea bed. To assess the impact of pile driving sounds on harbor porpoises, it is important to know at what distance these sounds can be detected. Using a psychophysical technique, a male porpoise's hearing thresholds were obtained for series of five pile driving sounds (inter-pulse interval 1.2-1.3 s) recorded at 100 and 800 m from the pile driving site, and played back in a pool. The 50% detection threshold sound exposure levels (SELs) for the first sound of the series (no masking) were 72 (100 m) and 74 (800 m) dB re 1 µPa(2)s. Multiple sounds in succession (series) caused a ~5 dB decrease in hearing threshold; the mean 50% detection threshold SELs for any sound in the series were 68 (100 m) and 69 (800 m) dB re 1 µPa(2)s. Depending on the actual propagation conditions and background noise levels, the results suggest that pile driving sounds are audible to porpoises at least at tens of kilometers from pile driving sites.


Assuntos
Limiar Auditivo , Ruído/efeitos adversos , Phocoena/psicologia , Detecção de Sinal Psicológico , Estimulação Acústica , Acústica , Animais , Audiometria , Fadiga Auditiva , Masculino , Phocoena/fisiologia , Pressão , Psicoacústica , Espectrografia do Som , Fatores de Tempo
3.
J Acoust Soc Am ; 132(2): 607-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894181

RESUMO

The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5 ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30 dB (re 1 s(-1)) higher than the sound exposure level, and a short duration (34 ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60 dB re 1 µPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.


Assuntos
Vias Auditivas/fisiologia , Limiar Auditivo , Explosões , Phocoena/fisiologia , Detecção de Sinal Psicológico , Estimulação Acústica , Animais , Audiometria , Masculino , Pressão , Psicoacústica , Espectrografia do Som , Fatores de Tempo , Água
4.
J Acoust Soc Am ; 131(3): 2325-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22423727

RESUMO

Mid-frequency and low-frequency sonar systems produce frequency-modulated sweeps which may affect harbor porpoises. To study the effect of sweeps on behavioral responses (specifically "startle" responses, which we define as sudden changes in swimming speed and/or direction), a harbor porpoise in a large pool was exposed to three pairs of sweeps: a 1-2 kHz up-sweep was compared with a 2-1 kHz down-sweep, both with and without harmonics, and a 6-7 kHz up-sweep was compared with a 7-6 kHz down-sweep without harmonics. Sweeps were presented at five spatially averaged received levels (mRLs; 6 dB steps; identical for the up-sweep and down-sweep of each pair). During sweep presentation, startle responses were recorded. There was no difference in the mRLs causing startle responses for up-sweeps and down-sweeps within frequency pairs. For 1-2 kHz sweeps without harmonics, a 50% startle response rate occurred at mRLs of 133 dB re 1 µPa; for 1-2 kHz sweeps with strong harmonics at 99 dB re 1 µPa; for 6-7 kHz sweeps without harmonics at 101 dB re 1 µPa. Low-frequency (1-2 kHz) active naval sonar systems without harmonics can therefore operate at higher source levels than mid-frequency (6-7 kHz) active sonar systems without harmonics, with similar startle effects on porpoises.


Assuntos
Limiar Auditivo/fisiologia , Phocoena/fisiologia , Reflexo de Sobressalto/fisiologia , Som/efeitos adversos , Estimulação Acústica/métodos , Acústica/instrumentação , Animais , Comportamento Animal , Masculino , Espectrografia do Som
5.
J Acoust Soc Am ; 130(2): 679-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21877781

RESUMO

Helicopter long range active sonar (HELRAS), a "dipping" sonar system used by lowering transducer and receiver arrays into water from helicopters, produces signals within the functional hearing range of many marine animals, including the harbor porpoise. The distance at which the signals can be heard is unknown, and depends, among other factors, on the hearing sensitivity of the species to these particular signals. Therefore, the hearing thresholds of a harbor porpoise for HELRAS signals were quantified by means of a psychophysical technique. Detection thresholds were obtained for five 1.25 s simulated HELRAS signals, varying in their harmonic content and amplitude envelopes. The 50% hearing thresholds for the different signals were similar: 76 dB re 1 µPa (broadband sound pressure level, averaged over the signal duration). The detection thresholds were similar to those found in the same porpoise for tonal signals in the 1-2 kHz range measured in a previous study. Harmonic distortion, which occurred in three of the five signals, had little influence on their audibility. The results of this study, combined with information on the source level of the signal, the propagation conditions and ambient noise levels, allow the calculation of accurate estimates of the distances at which porpoises can detect HELRAS signals.


Assuntos
Acústica , Aeronaves , Limiar Auditivo , Ruído , Phocoena/fisiologia , Detecção de Sinal Psicológico , Estimulação Acústica , Acústica/instrumentação , Animais , Audiometria , Masculino , Psicoacústica , Espectrografia do Som , Fatores de Tempo , Transdutores
6.
J Acoust Soc Am ; 129(1): 488-95, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21303029

RESUMO

Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.


Assuntos
Percepção Sonora , Phoca/fisiologia , Estimulação Acústica , Animais , Audiometria , Limiar Auditivo , Feminino , Imersão , Projetos Piloto , Psicoacústica , Tempo de Reação , Fatores de Tempo , Gravação em Vídeo
7.
J Acoust Soc Am ; 128(5): 3211-22, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21110616

RESUMO

The underwater hearing sensitivity of a young male harbor porpoise for tonal signals of various signal durations was quantified by using a behavioral psychophysical technique. The animal was trained to respond only when it detected an acoustic signal. Fifty percent detection thresholds were obtained for tonal signals (15 frequencies between 0.25-160 kHz, durations 0.5-5000 ms depending on the frequency; 134 frequency-duration combinations in total). Detection thresholds were quantified by varying signal amplitude by the 1-up 1-down staircase method. The hearing thresholds increased when the signal duration fell below the time constant of integration. The time constants, derived from an exponential model of integration [Plomp and Bouman, J. Acoust. Soc. Am. 31, 749-758 (1959)], varied from 629 ms at 2 kHz to 39 ms at 64 kHz. The integration times of the porpoises were similar to those of other mammals including humans, even though the porpoise is a marine mammal and a hearing specialist. The results enable more accurate estimations of the distances at which porpoises can detect short-duration environmental tonal signals. The audiogram thresholds presented by Kastelein et al. [J. Acoust. Soc. Am. 112, 334-344 (2002)], after correction for the frequency bandwidth of the FM signals, are similar to the results of the present study for signals of 1500 ms duration. Harbor porpoise hearing is more sensitive between 2 and 10 kHz, and less sensitive above 10 kHz, than formerly believed.


Assuntos
Limiar Auditivo/fisiologia , Condicionamento Psicológico/fisiologia , Modelos Biológicos , Phocoena/fisiologia , Percepção da Altura Sonora/fisiologia , Estimulação Acústica/métodos , Animais , Masculino , Biologia Marinha , Ruído , Psicoacústica , Detecção de Sinal Psicológico/fisiologia
8.
J Acoust Soc Am ; 127(2): 1135-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20136234

RESUMO

The underwater hearing sensitivities of two 2-year-old female harbor seals were quantified in a pool built for acoustic research by using a behavioral psycho-acoustic technique. The animals were trained only to respond when they detected an acoustic signal ("go/no-go" response). Detection thresholds were obtained for pure tone signals (frequencies: 0.2-40 kHz; durations: 0.5-5000 ms, depending on the frequency; 59 frequency-duration combinations). Detection thresholds were quantified by varying the signal amplitude by the 1-up, 1-down staircase method, and were defined as the stimulus levels, resulting in a 50% detection rate. The hearing thresholds of the two seals were similar for all frequencies except for 40 kHz, for which the thresholds differed by, on average, 3.7 dB. There was an inverse relationship between the time constant (tau), derived from an exponential model of temporal integration, and the frequency [log(tau)=2.86-0.94 log(f);tau in ms and f in kHz]. Similarly, the thresholds increased when the pulse was shorter than approximately 780 cycles (independent of the frequency). For pulses shorter than the integration time, the thresholds increased by 9-16 dB per decade reduction in the duration or number of cycles in the pulse. The results of this study suggest that most published hearing thresholds

Assuntos
Limiar Auditivo , Meio Ambiente , Audição , Phoca , Estimulação Acústica , Animais , Calibragem , Feminino , Testes Auditivos , Modelos Biológicos , Ruído , Periodicidade , Fatores de Tempo , Água
9.
J Acoust Soc Am ; 126(3): 1588, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19739772

RESUMO

A psychoacoustic behavioral technique was used to determine the critical ratios (CRs) of two harbor porpoises for tonal signals with frequencies between 0.315 and 150 kHz, in random Gaussian white noise. The masked 50% detection hearing thresholds were measured using a "go/no-go" response paradigm and an up-down staircase psychometric method. CRs were determined at one masking noise level for each test frequency and were similar in both animals. For signals between 0.315 and 4 kHz, the CRs were relatively constant at around 18 dB. Between 4 and 150 kHz the CR increased gradually from 18 to 39 dB ( approximately 3.3 dB/octave). Generally harbor porpoises can detect tonal signals in Gaussian white noise slightly better than most odontocetes tested so far. By combining the mean CRs found in the present study with the spectrum level of the background noise levels at sea, the basic audiogram, and the directivity index, the detection threshold levels of harbor porpoises for tonal signals in various sea states can be calculated.


Assuntos
Percepção Auditiva , Ruído , Distribuição Normal , Mascaramento Perceptivo , Phocoena/fisiologia , Estimulação Acústica , Animais , Audiometria , Limiar Auditivo , Meio Ambiente , Masculino , Oceanos e Mares , Psicoacústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA