Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 103(18): 7805-7817, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31414164

RESUMO

The application of lipases in liquid formulation instead of immobilized forms in the enzymatic biodiesel synthesis can make the process cost-efficient, more competitive, and sustainable. However, despite the benefits, the long reaction times required to achieve satisfactory yields is still a drawback of this biotechnological process. In this sense, employing the novel low-cost soluble NS40116 lipase, this paper proposes an innovative two-step hydroesterification reaction (TSHR) system as a technique of improving the reaction rate of an enzymatic biodiesel production. With the employment of two central composite statistical design to optimize the parameters of each of the reactions involved, the influence of the parameters "water concentration added to the reaction," "methanol-to-oil molar ratio," and "lipase load" on the process yield, besides the acid value of the samples, was investigated. After only 8 h of reaction, the highest fatty acid methyl ester yield reached was 97.1% with an acid value of 4.62 mg KOH g-1 utilizing a total of 8 wt% water, methanol-to-oil molar ratio of 6.3:1, and 0.70 wt% of lipase. Furthermore, the statistical models for both reactions indicated to be significant with 95% of reliability. Considering that the papers published using soluble lipases in a one-step batch process normally reach similar yields to those obtained in this research after 16 h to 24 h of reaction, the proposed system demonstrated to be a promising option of process configuration for the enzymatic production of biodiesel.


Assuntos
Biocombustíveis , Lipase/metabolismo , Metanol/metabolismo , Óleos de Plantas/metabolismo , Biotecnologia , Catálise , Esterificação , Ácidos Graxos/metabolismo , Reprodutibilidade dos Testes
2.
Appl Biochem Biotechnol ; 185(3): 705-716, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29297136

RESUMO

The performance of two new commercial low-cost lipases Eversa® Transform and Eversa® Transform 2.0 immobilized in different supports was investigated. The two lipases were adsorbed on four different hydrophobic supports. Interesting results were obtained for both lipases and for the four supports. However, the most active derivative was prepared by immobilization of Eversa® Transform 2.0 on Sepabeads C-18. Ninety-nine percent of fatty acid ethyl ester was obtained, in 3 h at 40 °C, by using hexane as solvent, a molar ratio of 4:1 (ethanol/oil), and 10 wt% of immobilized biocatalyst. The final reaction mixture contained traces of monoacylglycerols but was completely free of diacylglycerols. After four reaction cycles, the immobilized biocatalyst preserved 75% of activity. Both lipases immobilized in Sepabeads C-18 were very active with ethanol and methanol as acceptors, but they were much more stable in the presence of ethanol.


Assuntos
Enzimas Imobilizadas/química , Etanol/química , Ácidos Graxos/biossíntese , Lipase/química , Óleo de Girassol/química , Biocatálise , Cromatografia Líquida de Alta Pressão , Diglicerídeos/análise , Esterificação , Ésteres , Hexanos/química , Interações Hidrofóbicas e Hidrofílicas , Monoglicerídeos/análise , Polímeros/química
3.
Appl Biochem Biotechnol ; 176(3): 850-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25875788

RESUMO

This work shows new and promising experimental data of soybean oil and canola oil glycerolysis using Novozym 435 enzyme as catalyst in a solvent-free system using ultrasound bath for the emulsifier, monoglyceride (MAG), and diacylglycerol (DAG) production. The experiments were conducted in batch mode to study the influence of process variables as temperature (40 to 70 °C), immobilized enzyme content (2.5 to 10 wt%, relative to substrates), molar ratio glycerol/oil (0.8:1 to 3:1), agitation (0 to 1200 rpm) and ultrasound intensity (0 to 132 W cm(-2)). Highest yields of DAG+MAG (75 wt%) were obtained with molar ratio glycerol/canola oil 0.8:1, 70 °C, 900 rpm, 120 min of reaction time, 10 wt% of enzyme concentration, and 52.8 W cm(-2) of ultrasound intensity. When soybean oil was used, the best results in terms of DAG+MAGs (65 wt%) were using molar ratio of glycerol/soybean oil 0.8:1, 70 °C, 900 rpm, 90 min of reaction time, 10 wt% of enzyme content, and 40 % of ultrasound intensity (52.8 W cm(-2)). The results showed that the lipase-catalyzed glycerolysis in a solvent-free system with ultrasound bath can be a potential route for high content production of DAGs and MAGs.


Assuntos
Biocatálise , Ácidos Graxos Monoinsaturados/química , Glicerol/química , Lipase/metabolismo , Solventes/química , Óleo de Soja/química , Ondas Ultrassônicas , Candida/enzimologia , Diglicerídeos/química , Emulsificantes/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Alimentos , Proteínas Fúngicas , Cinética , Lipase/química , Monoglicerídeos/química , Óleo de Brassica napus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA