Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nutr Cancer ; 74(3): 1097-1105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34085572

RESUMO

An alternative to reduce the undesirable effects of antineoplastic agents has been the combination of classical treatments with nutritional strategies aimed at reducing systemic toxicity without decreasing the antitumor activity of already used drugs. Within this context, this study evaluated the possible reduction of toxicity when cisplatin treatment is combined with watermelon pulp juice supplementation in C57BL/6 mice with melanoma. Watermelon is a fruit rich in vitamins, minerals, proteins, lycopene, carotene, and xanthophylls, which has shown effectiveness in the treatment of cardiovascular diseases, weight loss, urinary infections, gout, hypertension, and mutagenicity. The following parameters were analyzed: animal survival, bone marrow genotoxicity, serum creatinine and urea, histopathological features of the tumor tissue, tumor weight and volume, and weight of non-tumor tissues (kidney, liver, spleen, heart, and lung). The results showed that watermelon had no antitumor effect but reduced the toxicity of cisplatin, as demonstrated by an increase in the number of bone marrow cells and a decrease in serum creatinine and urea levels. The data suggest that watermelon pulp juice can be an alternative for reducing the side effects of antineoplastic agents.


Assuntos
Antineoplásicos , Citrullus , Melanoma , Animais , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Creatinina , Camundongos , Camundongos Endogâmicos C57BL , Ureia
2.
Food Chem Toxicol ; 154: 112287, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058233

RESUMO

Since dietary factors are thought to be responsible for high colon cancer risk, we investigated the chemopreventive effect of jabuticaba seed extract (LJE) by administering yogurt with or without LJE against 1,2 dimethyl hydrazine (DMH)-induced colon carcinogenesis in rats. Results showed that LJE contained a total phenolic content of 57.16 g/100 g of seed extract in which 7.67 and 10.09 g/100 g represented total flavonoids and ellagitannins, respectively. LJE protected DNA and human LDL against induced in vitro oxidation, which was associated with the ellagitannin content and with the free-radical scavenging and reducing capacities. LJE alone had a non-clastogenicity/aneugenicity property, but in combination with cisplatin, it enhanced the chromosome aberrations in cancer cells. In colon cancer-induced rats, yogurt with or without LJE caused a reduction in pro-inflammatory parameters, decreased the RNA expression of antiapoptotic cytokines and increased the expression of proapoptotic cytokines. Moreover, LJE attenuated colon cancer initiation and progression by decreasing aberrant crypt foci and LJE recovered the gut microbiome. Together, this evidence suggests that LJE provides chemopreventive protection against colon cancer development by reducing inflammation and increasing proapoptotic pathways.


Assuntos
1,2-Dimetilidrazina/toxicidade , Carcinógenos/toxicidade , Neoplasias do Colo/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Taninos Hidrolisáveis/isolamento & purificação , Taninos Hidrolisáveis/farmacologia , Inflamação/prevenção & controle , Myrtaceae/embriologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/química , Animais , Aberrações Cromossômicas , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Masculino , Testes de Mutagenicidade , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/patologia , Ratos , Ratos Wistar
3.
Artigo em Inglês | MEDLINE | ID: mdl-30327680

RESUMO

The medicinal plant Vochysia divergens is a colonizing tree species of the Pantanal, a unique and little explored wetland region in Brazil. This species is used in folk medicine as syrups and teas to treat respiratory infections, digestive disorders, asthma, scarring, and skin diseases. The objectives of this study were to evaluate the antioxidant, cytotoxic, and genotoxic potential of the ethanolic extract of Vochysia divergens leaves (VdE), as well as the influence of VdE and its major component (the flavone 3',5-dimethoxy luteolin-7-O-ß-glucopyranoside; 3'5 DL) on MMS-induced genotoxicity. The extract significantly reduced the viability of V79 cells in the colorimetric XTT assay at concentrations ≥ 39 µg/mL. A significant increase in micronucleus frequencies was observed in V79 cell cultures treated with VdE concentrations of 160 and 320 µg/mL. However, animals treated with the tested doses of VdE (500, 1000, and 2000 mg/kg b.w.) exhibited frequencies that did not differ significantly from those of the negative control group, indicating the absence of genotoxicity. The results also showed that VdE was effective in reducing MMS-induced genotoxicity at concentrations of 20, 40, and 80 µg/mL in the in vitro test system and at a dose of 15 mg/kg b.w. in the in vivo test system. Its major component 3'5 DL exerted no protective effect, suggesting that it is not responsible for the effect of the extract. The results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that VdE was able to scavenge 92.6% of free radicals. In conclusion, the results suggest that the protective effect of VdE may be related, at least in part, to the antioxidant activity of its chemical constituents.

4.
J Ethnopharmacol ; 221: 119-125, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625274

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Copaifera species are used in folk medicine for a wide variety of pharmacological properties. This paper reports the cytotoxic and genotoxic analyses of oleoresins and leaves extracts of Copaifera species: C. duckei, C. multijuga, C. paupera, C. pubiflora, C. reticulata and C. trapezifolia. MATERIALS AND METHODS: In vitro assays were performed using Chinese hamster lung fibroblasts (V79 cells). The clonogenic efficiency and cytokinesis-block micronucleus assays were employed for the cytotoxicity and genotoxicity assessment, respectively. The mouse bone marrow micronucleus test was used for in vivo studies. RESULTS: The cytotoxicity results using the clonogenic efficiency assay showed IC50 values ranging from 9.8 to 99.2 µg/mL for oleoresins and 66.4-721.5 for leaves extracts. However, no cytotoxic effect was observed in the in vivo studies. Additionally, the treatments with oleoresins and leaves extracts did not significantly increase the frequency of micronuclei in both in vitro and in vivo mammalian cells. The UPLC-MS/MS and CG/MS analyses of Copaifera oleoresins allowed the identification of 10 acid diterpenes and 11 major volatile sesquiterpenes. Leaves are rich in phenolic compounds including two flavonoid heterosides and 16 galloylquinic acid derivatives. CONCLUSIONS: The oleoresins and leaves extracts of studied Copaifera species were not cytotoxic in vivo, as well as not genotoxic in both in vitro and vivo assays, under the experimental conditions used. Therefore, the obtained results should be sufficient to demonstrate the absence of significant genotoxic risk of these Copaifera products for human use in the evaluated concentrations range.


Assuntos
Fabaceae , Extratos Vegetais/toxicidade , Animais , Medula Óssea , Linhagem Celular , Cricetulus , Humanos , Masculino , Camundongos , Testes para Micronúcleos , Folhas de Planta , Medição de Risco
5.
Food Chem Toxicol ; 101: 114-120, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28088491

RESUMO

Persea americana Mill., commonly known as avocado, is a tree native to Central America that is widely used as a food source and for the treatment of diseases. This plant has various biological properties such as analgesic, anti-inflammatory and total cholesterol-lowering activity. In view of its pharmacological potential, we conducted a toxicogenetic study of the fruit pulp oil of P. americana (PAO) and investigated its influence on genotoxicity induced by methyl methanesulfonate (MMS) and doxorubicin. V79 cells and Swiss mice were used for the assays. The results showed no genotoxic effects of PAO in the in vitro or in vivo test systems. However, the highest PAO dose tested led to an increase in the levels of aspartate aminotransferase, indicating hepatic/tissue damage. This effect may be related to high concentrations of palmitic acid, the main component of PAO. Furthermore, PAO was effective in reducing the chromosome damage induced by MMS and doxorubicin. These results contribute to the safety assessment of PAO as a medicinal plant for human use.


Assuntos
Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Frutas/química , Instabilidade Genômica/efeitos dos fármacos , Persea/química , Extratos Vegetais/toxicidade , Toxicogenética/métodos , Animais , Antibióticos Antineoplásicos/toxicidade , Aspartato Aminotransferases/metabolismo , Bioensaio/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetulus , Doxorrubicina/toxicidade , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Metanossulfonato de Metila/toxicidade , Camundongos , Testes para Micronúcleos
6.
Biol Pharm Bull ; 39(11): 1839-1845, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803455

RESUMO

This study evaluated the influence of Styrax camporum stems hydroalcoholic extract (SCHE) and of chemical markers of the genus, egonol (EG) and homoegonol (HE), on DNA damage induced in V79 cells by mutagens with different mechanisms of action. These natural products were combined with different mutagens [methyl methanesulfonate (MMS), hydrogen peroxide (H2O2), (S)-(+)-camptothecin (CPT), and etoposide (VP-16)] to evaluate the modulatory effect on DNA damage. The results showed that SCHE was genotoxic at the highest concentration tested (60 µg/mL). Treatment with EG or HE alone induced no genotoxic effect, while genotoxic activity was observed when the two compounds were combined. The SCHE extract was able to reduce the frequency of micronuclei induced by H2O2 and VP-16. Similar results were observed when the cell cultures were treated with EG and/or HE plus VP-16. In contrast, the highest concentration (40 µg/mL) SCHE potentiated DNA damage induced by VP-16. Neolignan EG alone or combined with HE also potentiated H2O2-induced genotoxicity. However, these natural products did not influence the frequency of DNA damage induced by MMS or CPT. Therefore, the influence of SCHE and of chemical markers (EG and HE) of the genus on the induction of DNA damage depends on the concentration tested and on the mutagen used.


Assuntos
Anisóis/farmacologia , Benzofuranos/farmacologia , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Extratos Vegetais/farmacologia , Styrax , Animais , Anisóis/toxicidade , Benzofuranos/toxicidade , Camptotecina/toxicidade , Linhagem Celular , Ensaio Cometa , Cricetulus , Etoposídeo/toxicidade , Peróxido de Hidrogênio/toxicidade , Metanossulfonato de Metila/toxicidade , Testes para Micronúcleos , Extratos Vegetais/toxicidade
7.
J Med Microbiol ; 65(9): 937-950, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27452156

RESUMO

Copaifera trapezifolia Hayne occurs in the Atlantic Rainforest, which is considered one of the most important and endangered tropical forests on the planet. Although literature works have described many Copaifera spp., their biological activities remain little known. In the present study, we aimed to evaluate (1) the potential of the hydroalcoholic extract from C. trapezifolia leaves (CTE) to act against the causative agents of tooth decay and apical periodontitis and (2) the cytotoxicity and mutagenicity of CTE to ensure that it is safe for subsequent application. Concerning the tested bacteria, the MIC and the minimum bactericidal concentration of CTE varied between 100 and 400 µg ml-1. The time-kill assay conducted at a CTE concentration of 100 µg ml-1 evidenced bactericidal activity against Porphyromonas gingivalis (ATCC 33277) and Peptostreptococcus micros (clinical isolate) within 72 h. CTE at 200 µg ml-1 inhibited Porphyromonas gingivalis and Peptostreptococcus micros biofilm formation by at least 50 %. A combination of CTE with chlorhexidine dichlorohydrate did not prompt any synergistic effects. The colony-forming assay conducted on V79 cells showed that CTE was cytotoxic at concentrations above 156 µg ml-1. CTE exerted mutagenic effect on V79 cells, but the micronucleus test conducted on Swiss mice and the Ames test did not reveal any mutagenicity. Therefore, the use of standardized and safe extracts could be an important strategy to develop novel oral care products with antibacterial action. These extracts could also serve as a source of compounds for the discovery of new promising biomolecules.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/toxicidade , Produtos Biológicos/farmacologia , Produtos Biológicos/toxicidade , Fabaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Animais , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Testes de Mutagenicidade , Peptostreptococcus/efeitos dos fármacos , Peptostreptococcus/fisiologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia
8.
Biol Pharm Bull ; 39(6): 920-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27251494

RESUMO

Solanum cernuum VE. has been used extensively for the treatment of urinary disorders, gonorrhea and skin infections; cernumidine is a major component of S. cernuum (SC) hydroalcoholic extract. The micronucleus test in V79 cells was used to evaluate the genotoxic and antigenotoxic potential of SC and cernumidine. For antigenotoxicity assessment, methyl methanesulfonate (MMS, 44 µg/mL) and hydrogen peroxide (H2O2, 3.5 µg/mL) were added as inducers of chromosome damage. Antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. Significantly higher frequencies of micronuclei were observed in cell cultures treated with SC concentrations of 160 and 320 µg/mL in comparison with the negative control, demonstrating a genotoxic effect. There was no significant difference in the frequency of micronuclei between cell cultures treated with a combination of SC and MMS and those treated only with MMS. On the other hand, a significant reduction in the frequency of micronuclei was observed for V79 cells treated with SC or cernumidine plus H2O2 compared to those treated only with H2O2. Furthermore, SC and cernumidine were able to scavenge free radicals in the DPPH assay. Thus, the protective effect of SC and cernumidine against H2O2 can be attributed to antioxidant activity.


Assuntos
Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Guanidinas/farmacologia , Extratos Vegetais/farmacologia , Solanum , Animais , Antimutagênicos/química , Antimutagênicos/toxicidade , Antineoplásicos Alquilantes/toxicidade , Antioxidantes/química , Antioxidantes/toxicidade , Compostos de Bifenilo/química , Ácidos Cafeicos/química , Linhagem Celular , Cricetulus , Dano ao DNA , Guanidinas/química , Peróxido de Hidrogênio/toxicidade , Metanossulfonato de Metila/toxicidade , Testes para Micronúcleos , Mutagênicos/toxicidade , Oxidantes/toxicidade , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta
9.
Artigo em Inglês | MEDLINE | ID: mdl-27195016

RESUMO

Betulinic acid (BA) is a pentacyclic triterpene that can be isolated from many medicinal plants around the world. The aim of this study was to evaluate the genotoxic potential of BA and its effect on the genotoxicity induced by different mutagens in V79 cells using the cytokinesis-block micronucleus assay. Different BA concentrations were combined with methyl methanesulfonate (MMS), doxorubicin (DXR), camptothecin (CPT), and etoposide (VP-16). The frequencies of micronuclei in cultures treated with different BA concentrations did not differ from those of the negative control. Treatment with BA and MMS resulted in lower micronucleus frequencies than those observed for cultures treated with MMS alone. On the other hand, a significant increase in micronucleus frequencies was observed in cultures treated with BA combined with DXR or VP-16 when compared to these mutagens alone. The results showed no effect of BA on CPT-induced genotoxicity. Therefore, BA was not genotoxic under the present experimental conditions and exerted a different influence on the genotoxicity induced by different mutagens. The modulatory effect of BA depends on the type of mutagen and concentrations used.

10.
Anaerobe ; 40: 18-27, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27118478

RESUMO

Oral infections such as periodontitis and tooth decay are the most common diseases of humankind. Oleoresins from different copaifera species display antimicrobial and anti-inflammatory activities. Copaifera reticulata is the commonest tree of this genus and grows abundantly in several Brazilian states, such as Pará, Amazonas, and Ceará. The present study has evaluated the chemical composition and antimicrobial potential of the Copaifera reticulata oleoresin (CRO) against the causative agents of tooth decay and periodontitis and has assessed the CRO cytotoxic potential. Cutting edge analytical techniques (GC-MS and LC-MS) aided the chemical characterization of CRO. Antimicrobial assays included determination of the Minimum Inhibitory Concentration (MIC), determination of the Minimum Bactericidal Concentration (MBC), determination of the Minimum Inhibitory Concentration of Biofilm (MICB50), Time Kill Assay, and Checkerboard Dilution. Conduction of XTT assays on human lung fibroblasts (GM07492-A cells) helped to examine the CRO cytotoxic potential. Chromatographic analyses revealed that the major constituents of CRO were ß-bisabolene, trans-α-bergamotene, ß-selinene, α-selinene, and the terpene acids ent-agathic-15-methyl ester, ent-copalic acid, and ent-polyalthic acid. MIC and MBC results ranged from 6.25 to 200 µg/mL against the tested bacteria. The time-kill assay conducted with CRO at concentrations between 50 and 100 µg/mL showed bactericidal activity against Fusobacterium nucleatum (ATCC 25586) and Streptococcus mitis (ATCC 49456) after 4 h, Prevotella nigrescens (ATCC 33563) after 6 h, Porphyromonas gingivalis (ATCC 33277) and Lactobacillus casei (clinical isolate) after 12 h, and Streptococcus salivarius (ATCC 25975) and Streptococcus mutans (ATCC 25175) after 18 h. The fractional inhibitory concentration indexes (FICIs) revealed antagonistic interaction for Lactobacillus casei (clinical isolate), indifferent effect for Porphyromonas gingivalis (ATCC 33277), Fusobacterium nucleatum (ATCC 25586), Prevotella nigrescens (ATCC 33563), and Streptococcus salivarius (ATCC 25975), and additive effect for Streptococcus mutans (ATCC 25175) and Streptococcus mitis (ATCC 49456). Treatment of GM07492-A cells with CRO demonstrated that concentrations up to 39 µg/mL significantly reduced cell viability as compared to the negative control, being IC50 equal to 51.85 ± 5.4 µg/mL. These results indicated that CRO plays an important part in the search for novel sources of agents that can act against oral pathogens.


Assuntos
Antibacterianos/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Prevotella nigrescens/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Compostos Bicíclicos com Pontes/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cárie Dentária/microbiologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Lacticaseibacillus casei/efeitos dos fármacos , Lacticaseibacillus casei/crescimento & desenvolvimento , Lacticaseibacillus casei/isolamento & purificação , Testes de Sensibilidade Microbiana , Sesquiterpenos Monocíclicos , Periodontite/microbiologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/isolamento & purificação , Prevotella nigrescens/crescimento & desenvolvimento , Prevotella nigrescens/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/isolamento & purificação , Streptococcus salivarius/efeitos dos fármacos , Streptococcus salivarius/crescimento & desenvolvimento , Streptococcus salivarius/isolamento & purificação , Terpenos/isolamento & purificação
11.
PLoS One ; 9(11): e111999, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405606

RESUMO

The fruits of Solanum lycocarpum, known as wolf-fruit, are used in folk medicine, and because of that we have evaluated both the genotoxic potential of its glycoalkaloidic extract (SL) and its influence on the genotoxicity induced by methyl methanesulfonate. Furthermore, the potential blocking effect of SL intake in the initial stage of colon carcinogenesis in Wistar rats was investigated in a short-term (4-week) bioassay using aberrant crypt foci (ACF) as biomarker. The genotoxic potential was evaluated using the Swiss mice peripheral blood micronucleus test. The animals were treated with different doses of SL (15, 30 and 60 mg/kg b.w.) for 14 days, and the peripheral blood samples were collected at 48 h, 7 days and 14 days after starting the treatment. For antigenotoxicity assessment, MMS was administered on the 14th day, and after 24 h the harvesting of bone marrow and liver cells was performed, for the micronucleus and comet assays, respectively. In the ACF assay, male Wistar rats were given four subcutaneous injections of the carcinogen 1,2-dimethylhydrazine (DMH, 40 mg/kg b.w.), twice a week, during two weeks to induce ACF. The treatment with SL (15, 30 and 60 mg/kg b.w.) was given for four weeks during and after carcinogen treatment to investigate the potential beneficial effects of SL on DMH-induced ACF. The results demonstrated that SL was not genotoxic in the mouse micronucleus test. In animals treated with SL and MMS, the frequencies of micronucleus and extensions of DNA damage were significantly reduced in comparison with the animals receiving only MMS. Regarding the ACF assay, SL significantly reduced the frequency of ACF induced by DMH.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Dano ao DNA , Frutas/química , Extratos Vegetais/farmacologia , Solanum/química , Focos de Criptas Aberrantes/tratamento farmacológico , Alcaloides/isolamento & purificação , Alcaloides/uso terapêutico , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Masculino , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar
12.
Food Chem Toxicol ; 72: 8-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25007786

RESUMO

Salvia officinalis (sage) is a perennial woody subshrub native to the Mediterranean region that is commonly used as a condiment and as an anti-inflammatory, antioxidant and antimicrobial agent due to its biological activities. Manool is the most abundant micro-metabolite found in Salvia officinalis essential oils and extracts. We therefore decided to evaluate the cytotoxic, genotoxic and antigenotoxic potential of manool in Chinese hamster lung fibroblasts (V79) and human hepatoma cells (HepG2). Cytotoxicity was assessed by the colony-forming assay in V79 cells and toxic effects were observed at concentrations of up to 8.0 µg/mL. The micronucleus test was used to evaluate the genotoxicity and antigenotoxicity of manool in V79 and HepG2 cells at concentrations of 0.5-6.0 µg/mL and 0.5-8.0 µg/mL, respectively. For evaluation of antigenotoxicity, the concentrations of manool were combined with methyl methanesulfonate (MMS, 44 µg/mL). The results showed a significant increase in the frequency of micronuclei in cultures of both cell lines treated with the highest concentration tested, demonstrating a genotoxic effect. On the other hand, manool exhibited a protective effect against chromosome damage induced by MMS in HepG2 cells, but not in V79 cells. These data suggest that some manool metabolite may be responsible for the antigenotoxic effect observed in HepG2 cells.


Assuntos
Dano ao DNA/efeitos dos fármacos , Diterpenos/farmacologia , Metanossulfonato de Metila/toxicidade , Extratos Vegetais/farmacologia , Salvia officinalis/química , Animais , Antioxidantes/farmacologia , Linhagem Celular , Cricetinae , Cricetulus , Células Hep G2 , Humanos , Testes para Micronúcleos
13.
Planta Med ; 80(6): 490-2, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24687736

RESUMO

This study evaluated the antiproliferative activity of the Brazilian green propolis and Baccharis dracunculifolia extracts and their major compounds artepillin C and baccharin in different tumor cell lines. The lowest IC50 values observed for Brazilian green propolis and B. dracunculifolia extracts were 41.0 ± 4.5 µg/mL for U343 and 44.9 ± 7.1 µg/mL for HepG2, respectively. Regarding artepillin C and baccharin, the lowest IC50 values were 20.1 ± 2.9 for U343 and 13.0 ± 1.5 µg/mL for B16F10, respectively. For the association of artepillin C plus baccharin, the lowest IC50 result was 35.2 ± 0.5 µg/mL for B16F10. Artepillin C and baccharin were more cytotoxic than both Brazilian green propolis and B. dracunculifolia extracts. No additive or synergistic effect was observed for the association of artepillin C plus baccharin.


Assuntos
Antineoplásicos/uso terapêutico , Baccharis/química , Neoplasias/tratamento farmacológico , Fenilpropionatos/uso terapêutico , Fitoterapia , Própole/uso terapêutico , Tricotecenos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apiterapia , Brasil , Células HT29 , Células HeLa , Células Hep G2 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Fenilpropionatos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Própole/farmacologia , Tricotecenos/farmacologia
14.
J Nat Med ; 68(1): 236-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23475509

RESUMO

Natural products are some of the important sources of new anticancer drugs. The Brazilian flora is considered one of the most diverse in the word, although not many large-scale pharmacological and phytochemical studies have been conducted to date. With this in mind, in the present study we evaluated the antiproliferative activity of Solanum lycocarpum fruit glycoalkaloid extract (SL) and its major compounds, solamargine (SM) and solasonine (SS), against different tumor cell lines: murine melanoma (B16F10), human colon carcinoma (HT29), human breast adenocarcinoma (MCF-7), human cervical adenocarcinoma (HeLa), human hepatocellular liver carcinoma (HepG2) and human glioblastoma (MO59J, U343 and U251). The antiproliferative activity was evaluated using XTT assay and results were expressed as IC50. The most pronounced antiproliferative activity was observed for SM, with IC50 values ranging from 4.58 to 18.23 µg/mL. The lowest IC50 values were observed against HepG2, being 9.60 µg/mL for SL, 4.58 µg/mL for SM and 6.01 µg/mL for SS. Thus, SL, SM and SS demonstrated antiproliferative activity against the tumor cell lines tested, and were most effective against the HepG2 cell line.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Solanum , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Frutas , Humanos , Concentração Inibidora 50 , Melanoma Experimental , Camundongos , Estrutura Molecular , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Alcaloides de Solanáceas/farmacologia , Solanum/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-23710228

RESUMO

Since the beginning of propolis research, several groups have studied its antibacterial, antifungal, and antiviral properties. However, most of these studies have only employed propolis ethanolic extract (PEE) leading to little knowledge about the biological activities of propolis water extract (PWE). Based on this, in a previous study, we demonstrated the anti-inflammatory and immunomodulatory activities of PWE. In order to better understand the equilibrium between effectiveness and toxicity, which is essential for a new medicine, the characteristics of PWE were analyzed. We developed and validated an RP-HPLC method to chemically characterize PWE and PEE and evaluated the in vitro antioxidant/antimicrobial activity for both extracts and the safety of PWE via determining genotoxic potential using in vitro and in vivo mammalian micronucleus assays. We have concluded that the proposed analytical methodology was reliable, and both extracts showed similar chemical composition. The extracts presented antioxidant and antimicrobial effects, while PWE demonstrated higher antioxidant activity and more efficacious for the most of the microorganisms tested than PEE. Finally, PWE was shown to be safe using micronucleus assays.

16.
J Food Sci ; 77(8): T138-42, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22860599

RESUMO

Baccharin is one of the major chemical compounds isolated from the aerial parts of Baccharis dracunculifolia DC (Asteraceae), a native plant of South America and the most important botanical source of the Brazilian green propolis that has been used in alternative medicine to treat inflammation, liver disorders, and stomach ulcers. The present study was carried out in V79 cells to determine the possible genotoxic and antigenotoxic activities of baccharin utilizing comet and micronucleus assays, where 2 known mutagenic agents with different mechanisms of DNA damage were used as positive controls. The V79 cells were treated with concentrations of baccharin (0.25, 0.5, 1.0, and 2.0 µg/mL) and for to investigate the antigenotoxicity these concentrations were associated with methyl methanesulfonate (MMS; 200 µM-comet assay and 400 µM-micronucleus assay) or hydrogen peroxide (H(2)O(2;) 50 µM-comet assay and 100 µM-micronucleus assay). Statistically significant differences in the rate of DNA damage were observed in cultures treated with the highest concentration of baccharin when compared to the control group, but this difference was not found in the micronucleus assay. The results also showed that the frequencies of DNA damage and micronuclei induced by MMS and H(2)O(2) were significantly reduced after treatment with baccharin. The baccharin showed a chemoprevention effect and can be the chemical compound responsible for the antigenotoxicity also demonstrated by the B. dracunculifolia. The antioxidant potential of baccharin may be related to its chemoprevention activity induced against both genomic and chromosomal damages.


Assuntos
Baccharis/química , Dano ao DNA/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Metanossulfonato de Metila/toxicidade , Extratos Vegetais/farmacologia , Tricotecenos/farmacologia , Animais , Antioxidantes/farmacologia , Brasil , Linhagem Celular , Ensaio Cometa , Cricetinae , Testes para Micronúcleos , Mutagênicos/toxicidade
17.
Food Chem Toxicol ; 50(10): 3696-701, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22842122

RESUMO

Solanum lycocarpum St.-Hil (Solanaceae) is a hairy shrub or small much-branched tree of the Brazilian Cerrado, popularly known as "fruit-of-wolf". Considering that the induction of chromosomal mutations is involved in the process of carcinogenesis, and that S. lycocarpum is often used in folk medicine, it becomes relevant to study its effect on genetic material. In this sense, the aim of present study was to determine the possible cytotoxic, genotoxic and antigenotoxic potentials of S. lycocarpum fruits glycoalkaloid extract (SL) in Chinese hamster lung fibroblasts (V79 cells). The cytotoxicity was evaluated by the colony forming assay, apoptosis and necrosis assay, Trypan blue exclusion dye method and mitotic index. Genotoxic and antigenotoxic potential were evaluated by comet and chromosomal aberrations assays. Four concentrations of SL (4, 8, 16 and 32 µg/mL) were used for the evaluation of its genotoxic potential. The DNA damage-inducing agent methyl methanesulfonate (MMS, 22 µg/mL) was utilized in combination with extract to evaluate a possible protective effect. The results showed that SL was cytotoxic at concentrations above 32 µg/mL by the colony forming assay. For apoptosis and necrosis assay, the concentration of 64 µg/mL of SL showed statistically significant increase in cell death by apoptosis and necrosis, while the concentrations of 128 and 256 µg/mL of SL demonstrated statistically significant increase in cell death by necrosis, compared with the control group. Analysis of cell viability by Trypan blue exclusion indicated >96% viability for treatments with concentrations up to 32 µg/mL of SL. No significant differences in MI were observed between cultures treated with different concentrations of SL (4, 8, 16 and 32 µg/mL) alone or in combination with MMS and the negative control, indicating that these treatments were not cytotoxic. The comet and chromosomal aberrations assays revealed that SL does not display genotoxic activity. Moreover, the different concentrations of SL showed protective effect against both genomic and chromosomal damages induced by MMS.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fibroblastos/efeitos dos fármacos , Frutas/química , Extratos Vegetais/farmacologia , Solanum/química , Animais , Antineoplásicos Fitogênicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Aberrações Cromossômicas/induzido quimicamente , Ensaio Cometa , Cricetinae , Citotoxinas , Relação Dose-Resposta a Droga , Pulmão/citologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA