Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Toxicol ; 41(4): 291-296, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656559

RESUMO

The IQ Consortium NHP Reuse Working Group (WG) comprises members from 15 pharmaceutical and biotechnology companies. In 2020, the WG developed and distributed a detailed questionnaire on protein non-naïve NHP reuse to the WG member companies. The WG received responses from key stakeholders including principal investigators, facility managers, animal welfare officers and research scientists. This paper's content reflects the consolidated opinion of the WG members and the questionnaire responses on the subject of NHP reuse within nonclinical programs at all stages of research and development. Many of the pharmaceutical companies represented in the working group or participating in the questionnaire have already achieved some level of NHP reuse in their nonclinical programs, but the survey results suggested that there is significant potential to increase NHP reuse further and a need to understand the considerations involved in reuse more clearly. The WG has also focused carefully on the inherent concerns and risks of implementing protein non-naive NHP reuse and has evaluated the best methods of risk assessment and decision-making. This paper presents a discussion on the challenges and opportunities surrounding protein non-naïve NHP reuse and aims to stimulate further industry dialogue on the subject and provide guidance for pharmaceutical companies to establish roadmaps and decision trees enabling increased protein non-naïve NHP reuse. In addition, this paper represents a solid basis for collaborative engagement between pharmaceutical and biotechnology companies with contract research organizations (CROs) to discuss how the availability of protein non-naïve NHP within CROs can be better leveraged for their use within nonclinical studies.


Assuntos
Descoberta de Drogas , Primatas , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/métodos , Preparações Farmacêuticas
2.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271166

RESUMO

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Complexo CD3/química , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Receptor ErbB-2/química
3.
Invest Ophthalmol Vis Sci ; 60(13): 4097-4108, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31574535

RESUMO

Purpose: Investigate a significant, dose-related increase in IOP, leading to glaucomatous damage to the neuroretina and optic nerve following intravitreal (ITV) administration of a bispecific F(ab')2 [anti-VEGF/Angiopoietins [ANGPT]F(ab')2] molecule in adult monkeys. Methods: ITV ocular tolerability and investigation of anti-VEGF/ANGPT F(ab')2 (blocking both ANGPT1 and ANGPT2) was done in monkeys; mechanistic studies were done in neonatal mice. Results: Following the second ITV dose of anti-VEGF/ANGPT F(ab')2, all 1.5- and 4-mg/eye treated monkeys developed elevated IOP, which eventually was associated with optic disc cupping and thinning of the neuroretinal rim. Histopathologic examination showed nonreversible axonal degeneration in the optic nerves of animals administered 1.5 mg/eye and higher that was considered secondary to high IOP. Anti-ANGPT Fab also caused elevated IOP in monkeys, but anti-VEGF Fab did not contribute to the IOP increase. In addition, an anti-ANGPT2-selective antibody did not change IOP. In mice simultaneous blockade of ANGPT1 and ANGPT2 impaired the expansion and formation of Schlemm's canal (SC) vessels, similar to genetic ablation of Angpt1/Angpt2 and their receptor TIE2. As previously reported, blocking ANGPT2 alone did not affect SC formation in mice. Conclusions: Dual inhibition of ANGPT1/ANGPT2, but not ANGPT2 alone, leads to increased IOP and glaucomatous damage in monkeys. This confirms a role for TIE2/ANGPT signaling in the control of IOP in adults, a finding initially identified in transgenic mice. Dual pharmacologic inhibition of ANGPT1/ANGPT2 may affect aqueous drainage and homeostasis in adult monkeys and may be useful in developing novel models of glaucoma.


Assuntos
Angiopoietina-1/antagonistas & inibidores , Angiopoietina-2/antagonistas & inibidores , Humor Aquoso/metabolismo , Glaucoma/fisiopatologia , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Angiopoietina-1/fisiologia , Angiopoietina-2/fisiologia , Animais , Anticorpos/farmacologia , Pressão Intraocular , Primatas , Fator A de Crescimento do Endotélio Vascular/fisiologia
4.
Regul Toxicol Pharmacol ; 92: 165-172, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29199066

RESUMO

The development of novel drug candidates involves the thorough evaluation of potential efficacy and safety. To facilitate the safety assessment in light of global increases in prescription drug misuse/abuse, health authorities have developed guidance documents which provide a framework for evaluating the abuse liability of candidate therapeutics. The guidances do not distinguish between small molecules and biologics/biotherapeutics; however, there are key differences between these classes of therapeutics which are important drivers of concern for abuse. An analysis of these properties, including ability to distribute to the central nervous system, pharmacokinetic properties (e.g., half-life and metabolism), potential for off-target binding, and the physiochemical characteristics of biologic drug products suggests that the potential for abuse of a biologic is limited. Many marketed antibodies and recombinant proteins have been associated with adverse effects such as headache and dizziness. However, biologics have not historically engendered the rapid-onset psychoactive effects typically present for drugs of abuse, thus further underscoring their low risk for abuse potential. The factors to be taken into consideration before conducting nonclinical abuse liability studies with biologics are described herein; importantly, the aggregate assessment of these factors leads to the conclusion that abuse liability studies are unlikely to be necessary for this class of therapeutics.


Assuntos
Produtos Biológicos/administração & dosagem , Produtos Biológicos/efeitos adversos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Humanos , Uso Indevido de Medicamentos sob Prescrição/efeitos adversos , Medição de Risco , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/efeitos adversos
5.
Regul Toxicol Pharmacol ; 86: 221-230, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28322894

RESUMO

The nonclinical safety evaluation of therapeutic drug candidates is commonly conducted in two species (rodent and non-rodent) in keeping with international health authority guidance. Biologic drugs typically have restricted species cross-reactivity, necessitating the evaluation of safety in non-human primates and thus limiting the utility of lower order species. Safety studies of cross-reactive ocular biologic drug candidates have been conducted in rabbits as a second toxicology species, despite the fact that rabbits are not a rodent species. Such studies are often confounded by the development of anti-drug antibodies and severe ocular inflammation, the latter requiring studies to be terminated prematurely for animal welfare reasons. Notably, these confounding factors preclude the interpretation of safety. Nonclinical toxicology programs should be designed with consideration of ethical animal use and 3Rs principles (Replacement, Reduction and Refinement). The experience of several pharmaceutical sponsors, demonstrating that toxicology studies of ocular (intravitreal and topical ocular) biologic drug candidates in the rabbit are of limited interpretive value, calls into question the utility of such studies in this species and indicates that such studies should not be conducted.


Assuntos
Produtos Biológicos/efeitos adversos , Avaliação Pré-Clínica de Medicamentos/métodos , Oftalmopatias/imunologia , Coelhos , Animais , Olho/imunologia , Inflamação/imunologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA