RESUMO
The genus Senna contains globally distributed plant species of which the leaves, roots, and seeds have multiple traditional medicinal and nutritional uses. Notable chemical compounds derived from Senna spp. include sennosides and emodin which have been tested for antimicrobial effects in addition to their known laxative functions. However, studies of the effects of the combined chemical components on intact human gut microbiome communities are lacking. This study evaluated the effects of Juemingzi (Senna sp.) extract on the human gut microbiome using SIFR® (Systemic Intestinal Fermentation Research) technology. After a 48-hour human fecal incubation, we measured total bacterial cell density and fermentation products including pH, gas production and concentrations of short chain fatty acids (SCFAs). The initial and post-incubation microbial community structure and functional potential were characterized using shotgun metagenomic sequencing. Juemingzi (Senna seed) extracts displayed strong, taxon-specific anti-microbial effects as indicated by significant reductions in cell density (40%) and intra-sample community diversity. Members of the Bacteroidota were nearly eliminated over the 48-hour incubation. While generally part of a healthy gut microbiome, specific species of Bacteroides can be pathogenic. The active persistence of the members of the Enterobacteriaceae and selected Actinomycetota despite the reduction in overall cell numbers was demonstrated by increased fermentative outputs including high concentrations of gas and acetate with correspondingly reduced pH. These large-scale shifts in microbial community structure indicate the need for further evaluation of dosages and potential administration with prebiotic or synbiotic supplements. Overall, the very specific effects of these extracts may offer the potential for targeted antimicrobial uses or as a tool in the targeted remodeling of the gut microbiome.
Assuntos
Anti-Infecciosos , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Microbiota , Humanos , Extrato de Senna/análise , Extrato de Senna/farmacologia , Bactérias , Fezes/microbiologia , Sementes , Senosídeos/análise , Senosídeos/farmacologia , Anti-Infecciosos/farmacologiaRESUMO
BACKGROUND: Constipation and symptoms of gastrointestinal discomfort such as bloating are common among otherwise healthy individuals, but with significant impact on quality of life. Despite the recognized contribution of the gut microbiome to this pathology, little is known about which group(s) of microorganism(s) are playing a role. A previous study performed in vitro suggests that EpiCor® fermentate has prebiotic-like properties, being able to favorably modulate the composition of the gut microbiome. Therefore, the aim of this study was to investigate the effects of EpiCor fermentate in a population with symptoms of gastrointestinal discomfort and reduced bowel movements and to evaluate its effect at the level of the gut microbiome. METHODS: This pilot study was performed according to a randomized, double-blind, placebo-controlled parallel design. Eighty subjects with symptoms of gastrointestinal discomfort and constipation were allocated to one of two trial arms (placebo or EpiCor fermentate). Randomization was done in a stratified manner according to symptom severity, resulting in two subgroups of patients: severe and moderate. Daily records of gastrointestinal symptoms were assessed on a 5-point scale, and also stool frequency and consistency were documented during a 2-week run-in and a 6-week intervention phases. Averages over two-week intervals were calculated. Constipation-associated quality of life and general perceived stress were assessed at baseline and after 3 and 6 weeks of intervention. Fecal samples were also collected at these same time points. RESULTS: EpiCor fermentate led to a significant improvement of symptoms such as bloating/distension (p = 0.033 and p = 0.024 after 2 and 4 weeks of intervention, respectively), feeling of fullness (p = 0.004 and p = 0.023 after 2 and 4 weeks of intervention, respectively) and general daily scores (p = 0.046 after 2 weeks of intervention) in the moderate subgroup. A significant improvement in stool consistency was observed for the total population (p = 0.023 after 2 weeks of intervention) as well as for the severe subgroup (p = 0.046 after 2 weeks of intervention), and a nearly significant increase in stool frequency was detected for the total cohort (p = 0.083 and p = 0.090 after 2 and 4 weeks of intervention, respectively). These effects were accompanied by an improvement in constipation-associated quality of life and general perceived stress, particularly in the moderate subgroup. Members of the families Bacteroidaceae and Prevotellaceae, two groups of bacteria that have been previously reported to be deficient in constipated patients, were found to increase with EpiCor fermentate in the severe subgroup. In the moderate subgroup, a significant increase in Akkermansia muciniphila was observed. CONCLUSIONS: Despite the relatively low dose administered (500 mg/day), particularly when comparing to the high recommended doses for prebiotic fibers, EpiCor fermentate was able to modulate the composition of the gut microbiome, resulting in improvement of constipation-associated symptoms. Conversely, the reported increase in bowel movements may have altered the gut microbial community by increasing those groups of bacteria that are better adapted to a faster gastrointestinal transit time. TRIAL REGISTRATION: NCT03051399 at ClinicalTrials.gov. Retrospectively registered. Registration date: 13 February 2017.