Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203662

RESUMO

Cancer is one of the deadliest diseases worldwide and has been responsible for millions of deaths. However, developing a satisfactory smart multifunctional material combining different strategies to kill cancer cells poses a challenge. This work aims at filling this gap by developing a composite material for cancer treatment through hyperthermia and drug release. With this purpose, magnetic nanoparticles were coated with a polymer matrix consisting of poly (L-co-D,L lactic acid-co-trimethylene carbonate) and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. High-resolution transmission electron microscopy and selected area electron diffraction confirmed magnetite to be the only iron oxide in the sample. Cytotoxicity and heat release assays on the hybrid nanoparticles were performed here for the first time. The heat induction results indicate that these new magnetic hybrid nanoparticles are capable of increasing the temperature by more than 5 °C, the minimal temperature rise required for being effectively used in hyperthermia treatments. The biocompatibility assays conducted under different concentrations, in the presence and in the absence of an external alternating current magnetic field, did not reveal any cytotoxicity. Therefore, the overall results indicate that the investigated hybrid nanoparticles have a great potential to be used as carrier systems for cancer treatment by hyperthermia.


Assuntos
Calefação , Hipertermia Induzida , Humanos , Hipertermia , Eletricidade
2.
Nanomaterials (Basel) ; 10(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384606

RESUMO

Synthetic amorphous silica (SAS), manufactured in pyrogenic or precipitated form, is a nanomaterial with a widespread use as food additive (E 551). Oral exposure to SAS results from its use in food and dietary supplements, pharmaceuticals and toothpaste. Recent evidence suggests that oral exposure to SAS may pose health risks and highlights the need to address the toxic potential of SAS as affected by the physicochemical characteristics of the different forms of SAS. For this aim, investigating SAS toxicokinetics is of crucial importance and an analytical strategy for such an undertaking is presented. The minimization of silicon background in tissues, control of contamination (including silicon release from equipment), high-throughput sample treatment, elimination of spectral interferences affecting inductively coupled plasma mass spectrometry (ICP-MS) silicon detection, and development of analytical quality control tools are the cornerstones of this strategy. A validated method combining sample digestion with silicon determination by reaction cell ICP-MS is presented. Silica particles are converted to soluble silicon by microwave dissolution with mixtures of HNO3, H2O2 and hydrofluoric acid (HF), whereas interference-free ICP-MS detection of total silicon is achieved by ion-molecule chemistry with limits of detection (LoDs) in the range 0.2-0.5 µg Si g-1 for most tissues. Deposition of particulate SiO2 in tissues is assessed by single particle ICP-MS.

3.
J Food Sci ; 84(10): 2840-2846, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31517998

RESUMO

Cu, Fe, Mn, Mo, Selenium (Se), and Zn bioavailability from selenate- and selenite-enriched lettuce plants was studied by in vitro gastrointestinal digestion followed by an assay with Caco-2 cells. The plants were cultivated in the absence and presence of two concentrations (25 and 40 µmol/L of Se). After 28 days of cultivation, the plants were harvested, dried, and evaluated regarding the total concentration, bioaccessibility, and bioavailability of the analytes. The results showed that biofortification with selenate leads to higher Se absorption by the plant than biofortification with selenite. For the other nutrients, Mo showed high accumulation in the plants of selenate assays, and the presence of any Se species led to a reduction of the plant uptake of Cu and Fe. The accumulation of Zn and Mn was not strongly influenced by the presence of any Se species. The bioaccessibility values were approximately 71%, 10%, 52%, 84%, 71%, and 86% for Cu, Fe, Mn, Mo, Se, and Zn, respectively, and the contribution of the biofortified lettuce to the ingestion of these minerals is very small (except for Se and Mo). Due to the low concentrations of elements from digested plants, it was not possible to estimate the bioavailability for some elements, and for Mo and Zn, the values are below 6.9% and 3.4% of the total concentration, respectively. For Se, the bioavailability was greater for selenite-enriched than selenate-enriched plants (22% and 6.0%, respectively), because selenite is biotransformed by the plant to organic forms that are better assimilated by the cells.


Assuntos
Cobre/análise , Ferro/análise , Lactuca/química , Manganês/análise , Molibdênio/análise , Selênio/análise , Zinco/análise , Biofortificação , Disponibilidade Biológica , Células CACO-2 , Cobre/metabolismo , Humanos , Ferro/metabolismo , Lactuca/metabolismo , Manganês/metabolismo , Molibdênio/metabolismo , Ácido Selênico/análise , Ácido Selênico/metabolismo , Ácido Selenioso/análise , Ácido Selenioso/metabolismo , Selênio/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA