Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 65: 1363-1377, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121056

RESUMO

Human skin contains photolabile nitric oxide (NO) derivates such as nitrite and S-nitrosothiols, which upon UVA radiation decompose under high-output NO formation and exert NO-specific biological responses such as increased local blood flow or reduced blood pressure. To avoid the injurious effects of UVA radiation, we here investigated the mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic NO generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. As quantified by chemiluminescence detection (CLD), at physiological pH blue light at 420 or 453 nm induced a significant NO formation from S-nitrosoalbumin and also from aqueous nitrite solutions by a to-date not entirely identified Cu(1+)-dependent mechanism. As detected by electron paramagnetic resonance spectrometry in vitro with human skin specimens, blue light irradiation significantly increased the intradermal levels of free NO. As detected by CLD in vivo in healthy volunteers, irradiation of human skin with blue light induced a significant emanation of NO from the irradiated skin area as well as a significant translocation of NO from the skin surface into the underlying tissue. In parallel, blue light irradiation caused a rapid and significant rise in local cutaneous blood flow as detected noninvasively by using micro-light-guide spectrophotometry. Irradiation of human skin with moderate doses of blue light caused a significant increase in enzyme-independent cutaneous NO formation as well as NO-dependent local biological responses, i.e., increased blood flow. The effects were attributed to blue-light-induced release of NO from cutaneous photolabile NO derivates. Thus, in contrast to UVA, blue-light-induced NO generation might be therapeutically used in the treatment of systemic and local hemodynamic disorders that are based on impaired physiological NO production or bioavailability.


Assuntos
Óxido Nítrico/biossíntese , Nitritos/química , S-Nitrosotióis/química , Pele/metabolismo , Pele/efeitos da radiação , Adulto , Animais , Linhagem Celular Tumoral , Cobre/química , GMP Cíclico/biossíntese , GMP Cíclico/química , Feminino , Humanos , Luz , Luminescência , Masculino , Óxido Nítrico/sangue , Óxido Nítrico/química , Compostos Nitrosos/química , Fototerapia/métodos , Ratos , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA