Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocrinology ; 147(3): 1140-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16339209

RESUMO

The hypothalamus uses hormones and the autonomic nervous system to balance energy fluxes in the body. Here we show that the autonomic nervous system has a distinct organization in different body compartments. The same neurons control intraabdominal organs (intraabdominal fat, liver, and pancreas), whereas sc adipose tissue located outside the abdominal compartment receives input from another set of autonomic neurons. This differentiation persists up to preautonomic neurons in the hypothalamus, including the biological clock, that have a distinct organization depending on the body compartment they command. Moreover, we demonstrate a neuronal feedback from adipose tissue that reaches the brainstem. We propose that this compartment-specific organization offers a neuroanatomical perspective for the regional malfunction of organs in type 2 diabetes, where increased insulin secretion by the pancreas and disturbed glucose metabolism in the liver coincide with an augmented metabolic activity of visceral compared with sc adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Sistema Nervoso Autônomo/metabolismo , Encéfalo/patologia , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Pâncreas/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Distribuição da Gordura Corporal , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Homeostase , Hipotálamo/metabolismo , Insulina/metabolismo , Secreção de Insulina , Masculino , Síndrome Metabólica/patologia , Modelos Biológicos , Modelos Neurológicos , Neurônios Motores/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Fatores de Tempo
2.
Eur J Neurosci ; 22(10): 2531-40, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16307595

RESUMO

In order to drive tissue-specific rhythmic outputs, the master clock, located in the suprachiasmatic nucleus (SCN), is thought to reset peripheral oscillators via either chemical and hormonal cues or neural connections. Recently, the daily rhythm of plasma glucose (characterized by a peak before the onset of the activity period) has been shown to be directly driven by the SCN, independently of the SCN control of rhythmic feeding behaviour. Indeed, the daily variation in glucose was not impaired unless the scheduled feeding regimen (six-meal schedule) was associated with an SCN lesion. Here we show that the rhythmicity of both clock-gene mRNA expression in the liver and plasma glucose is not abolished under such a regular feeding schedule. Because the onset of the activity period and hyperglycemia are correlated with an increased sympathetic tonus, we investigated whether this autonomic branch is involved in the SCN control of plasma glucose rhythm and liver rhythmicity. Interestingly, hepatic sympathectomy combined with a six-meal feeding schedule resulted in a disruption of the plasma glucose rhythmicity without affecting the daily variation in clock-gene mRNA expression in the liver. Taking all these data together, we conclude that (i) the SCN needs the sympathetic pathway to the liver to generate the 24-h rhythm in plasma glucose concentrations, (ii) rhythmic clock-gene expression in the liver is not dependent on the sympathetic liver innervation and (iii) clock-gene rhythmicity in liver cells is not sufficient for sustaining a circadian rhythm in plasma glucose concentrations.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Glicemia/metabolismo , Fígado/inervação , Fígado/fisiologia , Periodicidade , Núcleo Supraquiasmático/fisiologia , Animais , Cromatografia Líquida de Alta Pressão , Corticosterona/sangue , DNA Complementar/biossíntese , DNA Complementar/genética , Ingestão de Alimentos/fisiologia , Eletrofisiologia , Crescimento/fisiologia , Insulina/sangue , Masculino , Atividade Motora/fisiologia , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simpatectomia
3.
J Neurosci ; 24(35): 7604-13, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15342726

RESUMO

Daily peak plasma glucose concentrations are attained shortly before awakening. Previous experiments indicated an important role for the biological clock, located in the suprachiasmatic nuclei (SCN), in the genesis of this anticipatory rise in plasma glucose concentrations by controlling hepatic glucose production. Here, we show that stimulation of NMDA receptors, or blockade of GABA receptors in the paraventricular nucleus of the hypothalamus (PVN) of conscious rats, caused a pronounced increase in plasma glucose concentrations. The local administration of TTX in brain areas afferent to the PVN revealed that an important part of the inhibitory inputs to the PVN was derived from the SCN. Using a transneuronal viral-tracing technique, we showed that the SCN is connected to the liver via both branches of the autonomic nervous system (ANS). The combination of a blockade of GABA receptors in the PVN with selective removal of either the sympathetic or parasympathetic branch of the hepatic ANS innervation showed that hyperglycemia produced by PVN stimulation was primarily attributable to an activation of the sympathetic input to the liver. We propose that the daily rise in plasma glucose concentrations is caused by an SCN-mediated withdrawal of GABAergic inputs to sympathetic preautonomic neurons in the PVN, resulting in an increased hepatic glucose production. The remarkable resemblance of the presently proposed control mechanism to that described previously for the control of daily melatonin rhythm suggests that the GABAergic control of sympathetic preautonomic neurons in the PVN is an important pathway for the SCN to control peripheral physiology.


Assuntos
Glicemia/fisiologia , Gluconeogênese/fisiologia , Fígado/inervação , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Supraquiasmático/fisiologia , Sistema Nervoso Simpático/fisiologia , Ácido gama-Aminobutírico/farmacologia , Animais , Transporte Axonal , Bicuculina/farmacologia , Ritmo Circadiano , Clonidina/farmacologia , Corticosterona/sangue , Glucagon/sangue , Herpesvirus Suídeo 1 , Hiperglicemia/induzido quimicamente , Hiperglicemia/fisiopatologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Insulina/sangue , Isoproterenol/farmacologia , Fígado/metabolismo , Masculino , Microdiálise , Muscimol/farmacologia , N-Metilaspartato/farmacologia , Norepinefrina/farmacologia , Parassimpatectomia , Sistema Nervoso Parassimpático/fisiologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Wistar , Núcleo Supraquiasmático/efeitos dos fármacos , Simpatectomia , Tetrodotoxina/farmacologia , Vasopressinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA