Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 315, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215189

RESUMO

BACKGROUND: Plant-produced specialised metabolites are a powerful part of a plant's first line of defence against herbivorous insects, bacteria and fungi. Wild ancestors of present-day cultivated tomato produce a plethora of acylsugars in their type-I/IV trichomes and volatiles in their type-VI trichomes that have a potential role in plant resistance against insects. However, metabolic profiles are often complex mixtures making identification of the functionally interesting metabolites challenging. Here, we aimed to identify specialised metabolites from a wide range of wild tomato genotypes that could explain resistance to vector insects whitefly (Bemisia tabaci) and Western flower thrips (Frankliniella occidentalis). We evaluated plant resistance, determined trichome density and obtained metabolite profiles of the glandular trichomes by LC-MS (acylsugars) and GC-MS (volatiles). Using a customised Random Forest learning algorithm, we determined the contribution of specific specialised metabolites to the resistance phenotypes observed. RESULTS: The selected wild tomato accessions showed different levels of resistance to both whiteflies and thrips. Accessions resistant to one insect can be susceptible to another. Glandular trichome density is not necessarily a good predictor for plant resistance although the density of type-I/IV trichomes, related to the production of acylsugars, appears to correlate with whitefly resistance. For type VI-trichomes, however, it seems resistance is determined by the specific content of the glands. There is a strong qualitative and quantitative variation in the metabolite profiles between different accessions, even when they are from the same species. Out of 76 acylsugars found, the random forest algorithm linked two acylsugars (S3:15 and S3:21) to whitefly resistance, but none to thrips resistance. Out of 86 volatiles detected, the sesquiterpene α-humulene was linked to whitefly susceptible accessions instead. The algorithm did not link any specific metabolite to resistance against thrips, but monoterpenes α-phellandrene, α-terpinene and ß-phellandrene/D-limonene were significantly associated with susceptible tomato accessions. CONCLUSIONS: Whiteflies and thrips are distinctly targeted by certain specialised metabolites found in wild tomatoes. The machine learning approach presented helped to identify features with efficacy toward the insect species studied. These acylsugar metabolites can be targets for breeding efforts towards the selection of insect-resistant cultivars.


Assuntos
Resistência à Doença/genética , Variação Genética , Hemípteros/fisiologia , Metaboloma/genética , Solanum/genética , Tisanópteros/fisiologia , Tricomas/genética , Tricomas/metabolismo , Algoritmos , Animais , Ecótipo , Genótipo , Fenótipo , Compostos Orgânicos Voláteis/análise
2.
PLoS One ; 14(7): e0219366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31283798

RESUMO

The intestinal microbiome is perturbed in patients with new-onset and chronic autoimmune inflammatory arthritis. Recent studies in mouse models suggest that development and progression of autoimmune arthritis is highly affected by the intestinal microbiome. This makes modulation of the intestinal microbiota an interesting novel approach to suppress inflammatory arthritis. Prebiotics, defined as non-digestible carbohydrates that selectively stimulate the growth and activity of beneficial microorganisms, provide a relatively non-invasive approach to modulate the intestinal microbiota. The aim of this study was to assess the therapeutic potential of dietary supplementation with a prebiotic mixture of 90% short-chain galacto-oligosaccharides and 10% long-chain fructo-oligosaccharides (scGOS/lcFOS) in experimental arthritis in mice. We here show that dietary supplementation with scGOS/lcFOS has a pronounced effect on the composition of the fecal microbiota. Interestingly, the genera Enterococcus and Clostridium were markedly decreased by scGOS/lcFOS dietary supplementation. In contrast, the family Lachnospiraceae and the genus Lactobacillus, both associated with healthy microbiota, increased in mice receiving scGOS/lcFOS diet. However, the scGOS/lcFOS induced alterations of the intestinal microbiota did not induce significant effects on the intestinal and systemic T helper cell subsets and were not sufficient to reproducibly suppress arthritis in mice. As expected, we did observe a significant increase in the bone mineral density in mice upon dietary supplementation with scGOS/lcFOS for 8 weeks. Altogether, this study suggests that dietary scGOS/lcFOS supplementation is able to promote presumably healthy gut microbiota and improve bone mineral density, but not inflammation, in arthritis-prone mice.


Assuntos
Artrite Experimental/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/genética , Oligossacarídeos/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Suplementos Nutricionais , Fezes/microbiologia , Feminino , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Prebióticos , Receptores de Interleucina-1 , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo
3.
Microbiome ; 5(1): 63, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645307

RESUMO

BACKGROUND: Perturbation of commensal intestinal microbiota has been associated with several autoimmune diseases. Mice deficient in interleukin-1 receptor antagonist (Il1rn -/- mice) spontaneously develop autoimmune arthritis and are susceptible to other autoimmune diseases such as psoriasis, diabetes, and encephalomyelitis; however, the mechanisms of increased susceptibility to these autoimmune phenotypes are poorly understood. We investigated the role of interleukin-1 receptor antagonist (IL-1Ra) in regulation of commensal intestinal microbiota, and assessed the involvement of microbiota subsets and innate and adaptive mucosal immune responses that underlie the development of spontaneous arthritis in Il1rn -/- mice. RESULTS: Using high-throughput 16S rRNA gene sequencing, we show that IL-1Ra critically maintains the diversity and regulates the composition of intestinal microbiota in mice. IL-1Ra deficiency reduced the intestinal microbial diversity and richness, and caused specific taxonomic alterations characterized by overrepresented Helicobacter and underrepresented Ruminococcus and Prevotella. Notably, the aberrant intestinal microbiota in IL1rn -/- mice specifically potentiated IL-17 production by intestinal lamina propria (LP) lymphocytes and skewed the LP T cell balance in favor of T helper 17 (Th17) cells, an effect transferable to WT mice by fecal microbiota. Importantly, LP Th17 cell expansion and the development of spontaneous autoimmune arthritis in IL1rn -/- mice were attenuated under germ-free condition. Selective antibiotic treatment revealed that tobramycin-induced alterations of commensal intestinal microbiota, i.e., reduced Helicobacter, Flexispira, Clostridium, and Dehalobacterium, suppressed arthritis in IL1rn -/- mice. The arthritis phenotype in IL1rn -/- mice was previously shown to depend on Toll-like receptor 4 (TLR4). Using the ablation of both IL-1Ra and TLR4, we here show that the aberrations in the IL1rn -/- microbiota are partly TLR4-dependent. We further identify a role for TLR4 activation in the intestinal lamina propria production of IL-17 and cytokines involved in Th17 differentiation preceding the onset of arthritis. CONCLUSIONS: These findings identify a critical role for IL1Ra in maintaining the natural diversity and composition of intestinal microbiota, and suggest a role for TLR4 in mucosal Th17 cell induction associated with the development of autoimmune disease in mice.


Assuntos
Artrite/imunologia , Microbioma Gastrointestinal , Doenças Hereditárias Autoinflamatórias/imunologia , Proteína Antagonista do Receptor de Interleucina 1/fisiologia , Interleucina-17/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Antibacterianos/administração & dosagem , Artrite/microbiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Variação Genética , Helicobacter/genética , Doenças Hereditárias Autoinflamatórias/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Mucosa/imunologia , Mucosa/microbiologia , Prevotella/genética , RNA Ribossômico 16S , Ruminococcus/genética , Células Th17/imunologia , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA