Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosurg ; 116(6): 1368-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22462511

RESUMO

OBJECT: This study investigates the outcome after traumatic brain injury (TBI) in mice lacking the essential DNA repair gene xeroderma pigmentosum group A (XPA). As damage to DNA has been implicated in neuronal cell death in various models, the authors sought to elucidate whether the absence of an essential DNA repair factor would affect the outcome of TBI in an experimental setting. METHODS: Thirty-seven adult mice of either wild-type (n = 18) or XPA-deficient ("knock-out" [n = 19]) genotype were subjected to controlled cortical impact experimental brain trauma, which produced a focal brain injury. Sham-injured mice of both genotypes were used as controls (9 in each group). The mice were subjected to neurobehavoral tests evaluating learning/acquisition (Morris water maze) and motor dysfunction (Rotarod and composite neuroscore test), pre- and postinjury up to 4 weeks. The mice were killed after 1 or 4 weeks, and cortical lesion volume, as well as hippocampal and thalamic cell loss, was evaluated. Hippocampal staining with doublecortin antibody was used to evaluate neurogenesis after the insult. RESULTS: Brain-injured XPA(-/-) mice exhibited delayed recovery from impairment in neurological motor function, as well as pronounced cognitive dysfunction in a spatial learning task (Morris water maze), compared with injured XPA(+/+) mice (p < 0.05). No differences in cortical lesion volume, hippocampal damage, or thalamic cell loss were detected between XPA(+/+) and XPA(-/-) mice after brain injury. Also, no difference in the number of cells stained with doublecortin in the hippocampus was detected. CONCLUSIONS: The authors' results suggest that lack of the DNA repair factor XPA may delay neurobehavioral recovery after TBI, although they do not support the notion that this DNA repair deficiency results in increased cell or tissue death in the posttraumatic brain.


Assuntos
Lesões Encefálicas/genética , Lesões Encefálicas/fisiopatologia , Córtex Cerebral/lesões , Córtex Cerebral/fisiopatologia , Reparo do DNA/genética , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Destreza Motora/fisiologia , Regeneração Nervosa/genética , Equilíbrio Postural/fisiologia , Reflexo de Endireitamento/fisiologia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Animais , Lesões Encefálicas/patologia , Morte Celular/genética , Morte Celular/fisiologia , Córtex Cerebral/patologia , Genótipo , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Tálamo/patologia , Tálamo/fisiopatologia
2.
Cancer Prev Res (Phila) ; 3(2): 179-89, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20103727

RESUMO

UV radiation-induced immunosuppression has been implicated in the development of skin cancers. Green tea polyphenols (GTP) in drinking water prevent photocarcinogenesis in the skin of mice. We studied whether GTPs in drinking water (0.1-0.5%, w/v) prevent UV-induced immunosuppression and (if so) potential mechanisms of this effect in mice. GTPs (0.2% and 0.5%, w/v) reduced UV-induced suppression of contact hypersensitivity (CHS) in response to a contact sensitizer in local (58-62% reductions; P < 0.001) and systemic (51-55% reductions; P < 0.005) models of CHS. Compared with untreated mice, GTP-treated mice (0.2%, w/v) had a reduced number of cyclobutane pyrimidine dimer-positive (CPD(+)) cells (59%; P < 0.001) in the skin, showing faster repair of UV-induced DNA damage, and had a reduced (2-fold) migration of CPD(+) cells from the skin to draining lymph nodes, which was associated with elevated levels of nucleotide excision repair (NER) genes. GTPs did not prevent UV-induced immunosuppression in NER-deficient mice but significantly prevented it in NER-proficient mice (P < 0.001); immunohistochemical analysis of CPD(+) cells indicated that GTPs reduced the numbers of UV-induced CPD(+) cells in NER-proficient mice (P < 0.001) but not in NER-deficient mice. Southwestern dot-blot analysis revealed that GTPs repaired UV-induced CPDs in xeroderma pigmentosum complementation group A (XPA)-proficient cells of a healthy person but did not in XPA-deficient cells obtained from XPA patients, indicating that a NER mechanism is involved in DNA repair. This study is the first to show a novel NER mechanism by which drinking GTPs prevents UV-induced immunosuppression and that inhibiting UV-induced immunosuppression may underlie the chemopreventive activity of GTPs against photocarcinogenesis.


Assuntos
Anticarcinógenos/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Flavonoides/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Fenóis/farmacologia , Fitoterapia/métodos , Administração Oral , Animais , Southern Blotting , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Feminino , Humanos , Tolerância Imunológica/efeitos da radiação , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C3H , Neoplasias Induzidas por Radiação/prevenção & controle , Polifenóis , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/prevenção & controle , Chá/química , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A/genética
3.
Am J Pathol ; 175(5): 1952-61, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19808641

RESUMO

UV-irradiated skin and UV-induced tumors overexpress the inducible isoform of cyclooxygenase-2 (Cox-2), and Cox-2 inhibition reduces photocarcinogenesis. To evaluate photoprotective effects of Polypodium leucotomos extract (PL), hairless Xpc(+/-) mice were fed for 10 days with PL (300 mg/kg) or vehicle then UV-irradiated, once. By 24 hours, UV-induced Cox-2 levels were increased in vehicle-fed and PL-fed mice, whereas by 48 and 72 hours, Cox-2 levels were four- to fivefold lower in PL-fed mice (P < 0.05). p53 expression/activity was increased in PL-fed versus vehicle-fed then UV-irradiated mice. UV-induced inflammation was decreased in PL-fed mice, as shown by approximately 60% decrease (P < 0.001) in neutrophil infiltration at 24 hours, and macrophages by approximately 50% (<0.02) at 24 and 48 hours. By 72 hours, 54 +/- 5% cyclobutane pyrimidine dimers remained in vehicle-fed versus 31 +/- 5% in PL-fed skin (P < 0.003). The number of 8-hydroxy-2'-deoxyguanosine-positive cells were decreased before UV irradiation by approximately 36% (P < 0.01), suggesting that PL reduces constitutive oxidative DNA damage. By 6 and 24 hours, the number of 8-hydroxy-2'-deoxyguanosine-positive cells were approximately 59% (P < 0.01) and approximately 79% (P < 0.03) lower in PL-fed versus vehicle-fed mice. Finally, UV-induced mutations in PL-fed-mice were decreased by approximately 25% when assessed 2 weeks after the single UV exposure. These data demonstrate that PL extract supplementation affords the following photoprotective effects: p53 activation and reduction of acute inflammation via Cox-2 enzyme inhibition, increased cyclobutane pyrimidine dimer removal, and reduction of oxidative DNA damage.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Reparo do DNA , Inflamação , Camundongos Pelados , Mutagênese , Extratos Vegetais/farmacologia , Polypodium/química , 8-Hidroxi-2'-Desoxiguanosina , Animais , Análise Mutacional de DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Suplementos Nutricionais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênese/efeitos da radiação , Extratos Vegetais/administração & dosagem , Dímeros de Pirimidina/metabolismo , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA